分析:设置两个栈s1、s2,一开始均为空。
入队: 将新元素push入s1。
出队:(1)、判断栈s2是否为空;
(2)、如果s2为空,把s1中的所有元素全部pop出并且push到s2中,从s2中pop出栈顶元素即可出列;
(3)、如果s2不为空,直接从s2中pop出栈顶元素即可出列
int enqueue(int e)
{
if(top1 == n&&!sempty(s2)) //s1满s2非空,这时s1不能入栈
{
cout<<"已满"<<endl;
return 0;
}
if(top1 == n&&sempty(s2))
{
while(!sempty(s1))
{
pop(s1,x);
push(s2,x);
}
push(s1,e);
return 1;
}
}
void dequeqeu()
{
if(!sempty(s2))
{
pop(s2,x);
}
else
{
if(!sempty(s1))
{
cout<<"队列为空"<<endl;
}
else
{
pop(s1,x);
push(s2,x);
}
pop(s2,x);
}
}
博客看到的一个面试官对这个题的分析与总结:
大多数人的思路是:始终维护s1作为存储空间,以s2作为临时缓冲区。
入队时,将元素压入s1。
出队时,将s1的元素逐个“倒入”(弹出并压入)s2,将s2的顶元素弹出作为出队元素,之后再将s2剩下的元素逐个“倒回”s1。
见下面示意图:
上述思路,可行性毋庸置疑。但有一个细节是可以优化一下的。即:在出队时,将s1的元素逐个“倒入”s2时,原在s1栈底的元素,不用“倒入”s2(即只“倒”s1.Count()-1个),可直接弹出作为出队元素返回。这样可以减少一次压栈的操作。约有一半人,经提示后能意识到此问题。
上述思路,有些变种,如:
入队时,先判断s1是否为空,如不为空,说明所有元素都在s1,此时将入队元素直接压入s1;如为空,要将s2的元素逐个“倒回”s1,再压入入队元素。
出队时,先判断s2是否为空,如不为空,直接弹出s2的顶元素并出队;如为空,将s1的元素逐个“倒入”s2,把最后一个元素弹出并出队。
有些人能同时想到大众方法和变种,应该说头脑还是比较灵光的。
相对于第一种方法,变种的s2好像比较“懒”,每次出队后,并不将元素“倒回”s1,如果赶上下次还是出队操作,效率会高一些,但下次如果是入队操作,效率不如第一种方法。我有时会让面试者分析比较不同方法的性能。我感觉(没做深入研究),入队、出队操作随机分布时,上述两种方法总体上时间复杂度和空间复杂度应该相差无几(无非多个少个判断)。
真正性能较高的,其实是另一个变种。即:
入队时,将元素压入s1。
出队时,判断s2是否为空,如不为空,则直接弹出顶元素;如为空,则将s1的元素逐个“倒入”s2,把最后一个元素弹出并出队。
这个思路,避免了反复“倒”栈,仅在需要时才“倒”一次。但在实际面试中很少有人说出,可能是时间较少的缘故吧。
以上几个思路乍看没什么问题了,但其实还是有个细节要考虑的。其实无论什么方法和情况,都要考虑没有元素可供出队时的处理(2个栈都为空的时候,出队操作一定会引起异常)。在实际写代码时,忽略这些判断或异常处理,程序会出现问题。所以,能不能考虑到这些细节,也体现了个人的素养。