We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly once. For example, 2143 is a 4-digit pandigital and is also prime.
What is the largest n-digit pandigital prime that exists?
#include<stdio.h>
#include<math.h>
#include<string.h>
#include<ctype.h>
#include<stdlib.h>
#include<stdbool.h>
bool isprim(int n)
{
int i=2;
if(n==1) return false;
for(; i*i<=n; i++)
{
if(n%i==0) return false;
}
return true;
}
bool pandigital(int n)
{
char s[10],d[10]={0};
int i=0;
sprintf(s,"%d",n);
int len=strlen(s);
while(i<len)
{
switch(s[i]-'0')
{
case 1: d[1]++;break;
case 2: d[2]++;break;
case 3: d[3]++;break;
case 4: d[4]++;break;
case 5: d[5]++;break;
case 6: d[6]++;break;
case 7: d[7]++;break;
case 8: d[8]++;break;
case 9: d[9]++;break;
default: break;
}
i++;
}
for(i=1; i<=len; i++)
{
if(d[i]!=1) return false;
}
if(!isprim(n)) return false;
else return true;
}
int main()
{
int i=10000001;
while(i>1000)
{
if(pandigital(i))
{
printf("%d\n",i);
break;
}
i=i-2;
}
return 0;
}
Answer:
| 7652413 |