The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be:
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
Let us list the factors of the first seven triangle numbers:
1: 1
3: 1,3
6: 1,2,3,6
10: 1,2,5,10
15: 1,3,5,15
21: 1,3,7,21
28: 1,2,4,7,14,28
We can see that 28 is the first triangle number to have over five divisors.
What is the value of the first triangle number to have over five hundred divisors?
#include <stdio.h> #include <stdbool.h> int trinumber(int n) { if(n % 2 == 0) { return (n / 2) * (n + 1); } else { return ((n + 1) / 2) * n; } } bool divnum(int n) { int i, sum = 0; for(i = 1; i * i < n; i++) { if(n % i == 0) { sum += 2; } } if(i * i == n) sum++; if(sum > 500) return true; else return false; } void solve(void) { int i, num; num = 0; for(i = 1; ; i++) { if(divnum(trinumber(i))) { printf("%d\n",trinumber(i)); break; } } } int main(void) { solve(); return 0; }
Answer:
| 76576500 |