Awesome Object Detection Repositories

Introduction

github: youngxiao.github.io
Based on amusi’s repositories: https://github.com/amusi/awesome-object-detection

From 2015 to May, 2019. Some awesome papers and repositories.

Sorted from recent to earlier:

  • CenterNet (2019)
  • M2Det (2019)
  • CornerNet (2018)
  • RefineDet (2018)
  • YOLOv3 (2018)
  • Mask R-CNN (2017)
  • RetinaNet (2017)
  • FPN (2017)
  • R-FCN (2016)
  • SSD (2016)
  • Faster R-CNN (2015)

Papers & Repositories

CenterNet

Two approaches are named CenterNet. The same name but different methods.

1. Objects as Points

intro: arXiv 2019, Object detection, 3D detection, and pose estimation using center point detection

2. CenterNet: Keypoint Triplets for Object Detection

intro: CVPR 2019, KeyPoint-based 2D object detection.

M2Det

M2Det: A Single-Shot Object Detector based on Multi-Level Feature Pyramid Network

intro: AAAI 2019

CornerNet

1. CornerNet-Lite: Efficient Keypoint Based Object Detection
intro: arXiv 2019, more efficient variants of CornerNet

2. CornerNet: Detecting Objects as Paired Keypoints

intro: ECCV 2018

RefineDet

Single-Shot Refinement Neural Network for Object Detection

intro: CVPR 2018

YOLOv3

YOLOv3: An Incremental Improvement

intro: arXiv 2018, YOLOv3 is extremely fast and accurate.

Mask R-CNN

intro: Facebook AI Research, ICCV2017, The model generates bounding boxes and segmentation masks for each instance of an object in the image. It’s based on Feature Pyramid Network (FPN) and a ResNet101 backbone.

RetinaNet

Focal Loss for Dense Object Detection

intro: ICCV 2017 Best student paper award. Facebook AI Researc

FPN

Feature Pyramid Networks for Object Detection

intro: Facebook AI Research

R-FCN

R-FCN: Object Detection via Region-based Fully Convolutional Networks

- arxiv:

SSD

SSD: Single Shot MultiBox Detector

intro: ECCV 2016 Oral

Faster R-CNN

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

intro: NIPS 2015

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值