sklearn中的TfidfVectorizer中计算TF-IDF的过程(详解)

Sklearn中的Tf-idf原理(source code):

https://github.com/scikit-learn/scikit-learn/blob/f0ab589f1541b1ca4570177d93fd7979613497e3/sklearn/feature_extraction/text.py

  1. Tf-idf训练

Fit_transform学习到一个字典,并返回Document-term的矩阵(即词典中的词在该文档中出现的频次)

TfidfVectorizer.fit_transform(raw_document) = TfidfTransformer.fit(X).transform(X)

Fit步骤学习idf vector,一个全局的词权重_idf_diag。输入的X是一个稀疏矩阵,行是样本数,列是特征数。

T

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值