Java NIO使用及原理分析 (一)

 最近由于工作关系要做一些Java方面的开发,其中最重要的一块就是Java NIO(New I/O),尽管很早以前了解过一些,但并没有认真去看过它的实现原理,也没有机会在工作中使用,这次也好重新研究一下,顺便写点东西,就当是自己学习 Java NIO的笔记了。本文为NIO使用及原理分析的第一篇,将会介绍NIO中几个重要的概念。

 在Java1.4之前的I/O系统中,提供的都是面向流的I/O系统,系统一次一个字节地处理数据,一个输入流产生一个字节的数据,一个输出流消费一个字节的数据,面向流的I/O速度非常慢,而在Java 1.4中推出了NIO,这是一个面向块的I/O系统,系统以块的方式处理处理,每一个操作在一步中产生或者消费一个数据库,按块处理要比按字节处理数据快的多。

 在NIO中有几个核心对象需要掌握:缓冲区(Buffer)、通道(Channel)、选择器(Selector)。

 缓冲区Buffer

 缓冲区实际上是一个容器对象,更直接的说,其实就是一个数组,在NIO库中,所有数据都是用缓冲区处理的。在读取数据时,它是直接读到缓冲区中的; 在写入数据时,它也是写入到缓冲区中的;任何时候访问 NIO 中的数据,都是将它放到缓冲区中。而在面向流I/O系统中,所有数据都是直接写入或者直接将数据读取到Stream对象中。

 在NIO中,所有的缓冲区类型都继承于抽象类Buffer,最常用的就是ByteBuffer,对于Java中的基本类型,基本都有一个具体Buffer类型与之相对应,它们之间的继承关系如下图所示:

 下面是一个简单的使用IntBuffer的例子:

[java] view plain copy
 print?
  1. import java.nio.IntBuffer;  
  2.   
  3. public class TestIntBuffer {  
  4.     public static void main(String[] args) {  
  5.         // 分配新的int缓冲区,参数为缓冲区容量  
  6.         // 新缓冲区的当前位置将为零,其界限(限制位置)将为其容量。它将具有一个底层实现数组,其数组偏移量将为零。  
  7.         IntBuffer buffer = IntBuffer.allocate(8);  
  8.   
  9.         for (int i = 0; i < buffer.capacity(); ++i) {  
  10.             int j = 2 * (i + 1);  
  11.             // 将给定整数写入此缓冲区的当前位置,当前位置递增  
  12.             buffer.put(j);  
  13.         }  
  14.   
  15.         // 重设此缓冲区,将限制设置为当前位置,然后将当前位置设置为0  
  16.         buffer.flip();  
  17.   
  18.         // 查看在当前位置和限制位置之间是否有元素  
  19.         while (buffer.hasRemaining()) {  
  20.             // 读取此缓冲区当前位置的整数,然后当前位置递增  
  21.             int j = buffer.get();  
  22.             System.out.print(j + "  ");  
  23.         }  
  24.   
  25.     }  
  26.   
  27. }  
运行后可以看到:

 在后面我们还会继续分析Buffer对象,以及它的几个重要的属性。

 通道Channel

 通道是一个对象,通过它可以读取和写入数据,当然了所有数据都通过Buffer对象来处理。我们永远不会将字节直接写入通道中,相反是将数据写入包含一个或者多个字节的缓冲区。同样不会直接从通道中读取字节,而是将数据从通道读入缓冲区,再从缓冲区获取这个字节。

 在NIO中,提供了多种通道对象,而所有的通道对象都实现了Channel接口。它们之间的继承关系如下图所示:

 使用NIO读取数据

 在前面我们说过,任何时候读取数据,都不是直接从通道读取,而是从通道读取到缓冲区。所以使用NIO读取数据可以分为下面三个步骤: 
 1. 从FileInputStream获取Channel 
 2. 创建Buffer 
 3. 将数据从Channel读取到Buffer中

 下面是一个简单的使用NIO从文件中读取数据的例子:

[java] view plain copy
 print?
  1. import java.io.*;  
  2. import java.nio.*;  
  3. import java.nio.channels.*;  
  4.   
  5. public class Program {  
  6.     static public void main( String args[] ) throws Exception {  
  7.         FileInputStream fin = new FileInputStream("c:\\test.txt");  
  8.           
  9.         // 获取通道  
  10.         FileChannel fc = fin.getChannel();  
  11.           
  12.         // 创建缓冲区  
  13.         ByteBuffer buffer = ByteBuffer.allocate(1024);  
  14.           
  15.         // 读取数据到缓冲区  
  16.         fc.read(buffer);  
  17.           
  18.         buffer.flip();  
  19.           
  20.         while (buffer.remaining()>0) {  
  21.             byte b = buffer.get();  
  22.             System.out.print(((char)b));  
  23.         }  
  24.           
  25.         fin.close();  
  26.     }  
  27. }  

 使用NIO写入数据

 使用NIO写入数据与读取数据的过程类似,同样数据不是直接写入通道,而是写入缓冲区,可以分为下面三个步骤: 
 1. 从FileInputStream获取Channel 
 2. 创建Buffer 
 3. 将数据从Channel写入到Buffer中

 下面是一个简单的使用NIO向文件中写入数据的例子:

[java] view plain copy
 print?
  1. import java.io.*;  
  2. import java.nio.*;  
  3. import java.nio.channels.*;  
  4.   
  5. public class Program {  
  6.     static private final byte message[] = { 8311110910132,  
  7.         9812111610111546 };  
  8.   
  9.     static public void main( String args[] ) throws Exception {  
  10.         FileOutputStream fout = new FileOutputStream( "c:\\test.txt" );  
  11.           
  12.         FileChannel fc = fout.getChannel();  
  13.           
  14.         ByteBuffer buffer = ByteBuffer.allocate( 1024 );  
  15.           
  16.         for (int i=0; i<message.length; ++i) {  
  17.             buffer.put( message[i] );  
  18.         }  
  19.           
  20.         buffer.flip();  
  21.           
  22.         fc.write( buffer );  
  23.           
  24.         fout.close();  
  25.     }  
  26. }  

 本文介绍了Java NIO中三个核心概念中的两个,并且看了两个简单的示例,分别是使用NIO进行数据的读取和写入,Java NIO中最重要的一块Nonblocking I/O将在第三篇中进行分析,下篇将会介绍Buffer内部实现。

(未完待续)

### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列创新性的训练策略,解决了传统 DETR 模型收敛慢和解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督信号,能够与原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传统的 CNN 架构,例如 YOLO 系列中的 CSPNet 和 PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动学习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的新学习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的学习能力和泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以与真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督信号。这一设计不仅简化了模型架构,还显著降低了参数量和推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **与其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其与 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动学习策略、共享权重解编码器分支以及混合编码器设计。这些技术创新共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值