Problem Description
A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2,
..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length
common subsequence of X and Y.
The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.
The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.
Sample Input
abcfbc abfcab programming contest abcd mnp
Sample Output
4 2 0PS:最后一个dp[i][j]={dp[i-1][j-1];dp[i-1][j];dp[i][j-1]}三者之中比较是否相同;最长公共子序列问题具有最优子结构性质
设 X = { x1 , ... , xm } Y = { y1 , ... , yn } 及它们的最长子序列 Z = { z1 , ... , zk }
则
1、若 xm = yn , 则 zk = xm = yn,且Z[k-1] 是 X[m-1] 和 Y[n-1] 的最长公共子序列 2、若 xm != yn ,且 zk != xm , 则 Z 是 X[m-1] 和 Y 的最长公共子序列 3、若 xm != yn , 且 zk != yn , 则 Z 是 Y[n-1] 和 X 的最长公共子序列
由性质导出子问题的递归结构
当 i = 0 , j = 0 时 , c[i][j] = 0 当 i , j > 0 ; xi = yi 时 , c[i][j] = c[i-1][j-1] + 1 当 i , j > 0 ; xi != yi 时 , c[i][j] = max { c[i][j-1] , c[i-1][j] }
#include<iostream> #include<cstring> using namespace std; int main() { int i,j,dp[500][500]; string s1,s2; while(cin>>s1>>s2) { memset(dp,0,sizeof(dp)); for(i=1; i<=s1.size(); i++) { for(j=1; j<=s2.size(); j++) { if(s1[i-1]==s2[j-1]) dp[i][j]=dp[i-1][j-1]+1; else dp[i][j]=max(dp[i-1][j],dp[i][j-1]); } } cout<<dp[s1.size()][s2.size()]<<endl; } return 0; }