
数学
深度思索
走在路上思考着前进
展开
-
对数线性模型之一(逻辑回归), 广义线性模型学习总结
经典线性模型自变量的线性预测就是因变量的估计值。 广义线性模型:自变量的线性预测的函数是因变量的估计值。常见的广义线性模型有:probit模型、poisson模型、对数线性模型等等。对数线性模型里有:logistic regression、Maxinum entropy。本篇是对逻辑回归的学习总结,以及广义线性模型导出逻辑回归的过程。下一篇将是对最大熵模型的学习总结。本篇介绍的大纲如下:1转载 2016-07-22 13:32:50 · 936 阅读 · 0 评论 -
雅克比矩阵&行列式——单纯的矩阵和算子
最近接触了一点雅克比的东西,以前学习雅克比矩阵和雅克比行列式是在高数上,就知道个二重积分的时候可以用一下,其他的真没遇到过。最近在学习随机过程,在涉及到随机变量转化求解概率密度函数时,猛然冒出雅克比行列式让我刮目相看,于是再次学习这些东西。 首先介绍定义,雅克比矩阵是一阶偏导数以一定的方式排列成的矩阵,当其实方阵时,行列式称为雅克比行列式。设有m个n元函数组成的函数组:,称之转载 2016-07-19 21:15:49 · 2386 阅读 · 0 评论 -
广义线性模型
今天我来介绍一种在机器学习中应用的比较多的模型,叫做广义线性模型(GLM)。这种模型是把自变量的线性预测函数当作因变量的估计值。在机器学习中,有很多模型都是基于广义线性模型的,比如传统的线性回归模型,最大熵模型,Logistic回归,softmax回归,等等。今天主要来学习如何来针对某类型的分布建立相应的广义线性模型。 Contents 1.转载 2016-07-21 22:51:28 · 709 阅读 · 0 评论 -
稀疏矩阵存储格式总结+存储效率对比:COO,CSR,DIA,ELL,HYB
稀疏矩阵是指矩阵中的元素大部分是0的矩阵,事实上,实际问题中大规模矩阵基本上都是稀疏矩阵,很多稀疏度在90%甚至99%以上。因此我们需要有高效的稀疏矩阵存储格式。本文总结几种典型的格式:COO,CSR,DIA,ELL,HYB。 (1)Coordinate(COO)这是最简单的一种格式,每一个元素需要用一个三元组来表示,分别是(行号,列号,数值),对应上图右边的一列。这种方式简单,但转载 2017-08-29 22:02:58 · 1042 阅读 · 0 评论