Time Limit:6666MS | Memory Limit:Unknown | 64bit IO Format:%lld & %llu |
Description

Problem B: Bachet's Game

Here we consider a variation of this game. The number of stones that can be removed in a single move must be a member of a certain set of m numbers. Among the m numbers there is always 1 and thus the game never stalls.
Input
The input consists of a number of lines. Each line describes one game by a sequence of positive numbers. The first number is n <= 1000000 the number of stones on the table; the second number is m <= 10 giving the number of numbers that follow; the last m numbers on the line specify how many stones can be removed from the table in a single move.Input
For each line of input, output one line saying either Stan wins or Ollie wins assuming that both of them play perfectly.Sample input
20 3 1 3 8 21 3 1 3 8 22 3 1 3 8 23 3 1 3 8 1000000 10 1 23 38 11 7 5 4 8 3 13 999996 10 1 23 38 11 7 5 4 8 3 13
Output for sample input
Stan wins Stan wins Ollie wins Stan wins Stan wins Ollie wins
题意:两个人做游戏,有n块石字,m堆,每个人每次只能取m堆数量中的个数,问谁会赢
思路:dp[i]表示还剩i个是S能不能赢,那么当dp[i-a[j]]为偶数,S就可以赢
#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<vector>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<algorithm>
using namespace std;
const int maxn=1000100;
int dp[maxn];
int a[maxn];
int N,M;
int main()
{
while(scanf("%d",&N)!=EOF)
{
scanf("%d",&M);
for(int i=1;i<=M;i++)scanf("%d",&a[i]);
memset(dp,0,sizeof(dp));
for(int i=1;i<=N;i++)
for(int j=1;j<=M;j++)
if(i>=a[j]&&dp[i-a[j]]==0)dp[i]=1;
if(dp[N])printf("Stan wins\n");
else printf("Ollie wins\n");
}
return 0;
}