DLX+hdu2295

F.A.Q
Hand In Hand
Online Acmers
Forum | Discuss
Statistical Charts
Problem Archive
Realtime Judge Status
Authors Ranklist
 
      C/C++/Java Exams     
ACM Steps
Go to Job
Contest LiveCast
ICPC@China
Best Coder beta
VIP | STD Contests
Virtual Contests 
    DIY | Web-DIY beta
Recent Contests
Author ID 
Password 
  Register new ID
BestCoder官方群:385386683 欢迎加入~
寻人启事:2014级新生看过来!

Radar

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2500    Accepted Submission(s): 974


Problem Description
N cities of the Java Kingdom need to be covered by radars for being in a state of war. Since the kingdom has M radar stations but only K operators, we can at most operate K radars. All radars have the same circular coverage with a radius of R. Our goal is to minimize R while covering the entire city with no more than K radars.
 

Input
The input consists of several test cases. The first line of the input consists of an integer T, indicating the number of test cases. The first line of each test case consists of 3 integers: N, M, K, representing the number of cities, the number of radar stations and the number of operators. Each of the following N lines consists of the coordinate of a city.
Each of the last M lines consists of the coordinate of a radar station.

All coordinates are separated by one space.
Technical Specification

1. 1 ≤ T ≤ 20
2. 1 ≤ N, M ≤ 50
3. 1 ≤ K ≤ M
4. 0 ≤ X, Y ≤ 1000
 

Output
For each test case, output the radius on a single line, rounded to six fractional digits.
 

Sample Input
      
1 3 3 2 3 4 3 1 5 4 1 1 2 2 3 3
 

Sample Output
      
2.236068

从m个雷达站中选出k个覆盖n个城市

DLX,原来的模板不好用,老是出bug,还是用kuangbin大神的吧

#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<vector>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<algorithm>
using namespace std;
const int maxn=60;
const int maxnode=60*60;
const int maxr=60;
const double eps=1e-8;
int N,M,K;
struct node
{
    double x,y;
}p[maxn],p1[maxn];

struct DLX
{
    int n,m,size;
    int U[maxnode],D[maxnode],R[maxnode],L[maxnode],Row[maxnode],Col[maxnode];
    int H[maxn],S[maxn];
    int ands,ans[maxn];
    void init(int _n,int _m)
    {
        n = _n;
        m = _m;
        for(int i = 0;i <= m;i++)
        {
            S[i] = 0;
            U[i] = D[i] = i;
            L[i] = i-1;
            R[i] = i+1;
        }
        R[m] = 0; L[0] = m;
        size = m;
        for(int i = 1;i <= n;i++)
            H[i] = -1;
    }
    void Link(int r,int c)
    {
        ++S[Col[++size]=c];
        Row[size] = r;
        D[size] = D[c];
        U[D[c]] = size;
        U[size] = c;
        D[c] = size;
        if(H[r] < 0)H[r] = L[size] = R[size] = size;
        else
        {
            R[size] = R[H[r]];
            L[R[H[r]]] = size;
            L[size] = H[r];
            R[H[r]] = size;
        }
    }
    void remove(int c)
    {
        for(int i = D[c];i != c;i = D[i])
            L[R[i]] = L[i], R[L[i]] = R[i];
    }
    void resume(int c)
    {
        for(int i = U[c];i != c;i = U[i])
            L[R[i]]=R[L[i]]=i;
    }
    bool v[maxnode];
    int f()
    {
        int ret = 0;
        for(int c = R[0];c != 0;c = R[c])v[c] = true;
        for(int c = R[0];c != 0;c = R[c])
            if(v[c])
            {
                ret++;
                v[c] = false;
                for(int i = D[c];i != c;i = D[i])
                    for(int j = R[i];j != i;j = R[j])
                        v[Col[j]] = false;
            }
        return ret;

    }
    bool Dance(int d)
    {
        if(d + f() > K)return false;
        if(R[0] == 0)return d <= K;
        int c = R[0];
        for(int i = R[0];i != 0;i = R[i])
            if(S[i] < S[c])
                c = i;
        for(int i = D[c];i != c;i = D[i])
        {
            remove(i);
            for(int j = R[i];j != i;j = R[j])remove(j);
            if(Dance(d+1))return true;
            for(int j = L[i];j != i;j = L[j])resume(j);
            resume(i);
        }
        return false;
    }
}dlx;

double D(int i,int j)
{
    double x=p1[i].x-p[j].x;
    double y=p1[i].y-p[j].y;
    return sqrt(x*x+y*y);
}
bool can(double R)
{
    dlx.init(M,N);
    for(int i=1;i<=M;i++)
    {
        for(int j=1;j<=N;j++)
            if(D(i,j)<R-eps)dlx.Link(i,j);
    }
    return dlx.Dance(0);
}
void solve()
{
    double l=0,r=1e8,mid;
    while(r-l>eps)
    {
        mid=(l+r)/2;
        if(can(mid))r=mid-eps;
        else l=mid+eps;
    }
    printf("%.6lf\n",l);
}
int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d%d%d",&N,&M,&K);
        for(int i=1;i<=N;i++)scanf("%lf%lf",&p[i].x,&p[i].y);
        for(int i=1;i<=M;i++)scanf("%lf%lf",&p1[i].x,&p1[i].y);
        solve();
    }
    return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值