超分辨率相关资源大列表-1

本文收集了单张图像和视频超分辨率领域的相关论文、数据集和开源仓库,涵盖了从传统方法到深度学习方法的多种技术路线,包括SRCNN、SRGAN、EDSR等经典模型,以及Set5、DIV2K等常用数据集。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文收藏自Github,仅供学习交流所用。

 

Awesome-Super-Resolution(in progress)

Collect some super-resolution related papers, data and repositories.

repositories

Awesome paper list:

Single-Image-Super-Resolution

Super-Resolution.Benckmark

Video-Super-Resolution

VideoSuperResolution

Awesome repos:

repoFramework
EDSR-PyTorchPyTorch
Image-Super-ResolutionKeras
image-super-resolutionKeras
Super-Resolution-ZooMxNet
super-resolutionKeras
neural-enhanceTheano
srezTensorflow
waifu2xTorch
BasicSRPyTorch
super-resolutionPyTorch
VideoSuperResolutionTensorflow
video-super-resolutionPytorch

Datasets

Note this table is referenced from here.

NameUsageLinkComments
Set5Testdownloadjbhuang0604
SET14Testdownloadjbhuang0604
BSD100Testdownloadjbhuang0604
Urban100Testdownloadjbhuang0604
Manga109Testwebsite 
SunHay80Testdownloadjbhuang0604
BSD300Train/Valdownload 
BSD500Train/Valdownload 
91-ImageTraindownloadYang
DIV2K2017Train/ValwebsiteNTIRE2017
Real SRTrain/ValwebsiteNTIRE2019
WaterlooTrainwebsite 
VID4Testdownload4 videos
MCL-VTrainwebsite12 videos
GOPROTrain/Valwebsite33 videos, deblur
CelebATrainwebsiteHuman faces
SintelTrain/ValwebsiteOptical flow
FlyingChairsTrainwebsiteOptical flow
Vimeo-90kTrain/Testwebsite90k HQ videos

Dataset collections

Benckmark and DIV2K: Set5, Set14, B100, Urban100, Manga109, DIV2K2017 include bicubic downsamples with x2,3,4,8

SR_testing_datasets: Test: Set5, Set14, B100, Urban100, Manga109, Historical; Train: T91,General100, BSDS200

paper

Non-DL based approach

SCSR: TIP2010, Jianchao Yang et al.papercode

ANR: ICCV2013, Radu Timofte et al. papercode

A+: ACCV 2014, Radu Timofte et al. papercode

IA: CVPR2016, Radu Timofte et al. paper

SelfExSR: CVPR2015, Jia-Bin Huang et al. papercode

NBSRF: ICCV2015, Jordi Salvador et al. paper

RFL: ICCV2015, Samuel Schulter et al papercode

DL based approach

Note this table is referenced from here

ModelPublishedCodeKeywords
SRCNNECCV14KerasKaiming
RAISRarXiv-Google, Pixel 3
ESPCNCVPR16KerasReal time/SISR/VideoSR
VDSRCVPR16MatlabDeep, Residual
DRCNCVPR16MatlabRecurrent
DRRNCVPR17CaffePyTorchRecurrent
LapSRNCVPR17MatlabHuber loss
IRCNNCVPR17Matlab 
EDSRCVPR17PyTorchNTIRE17 Champion
BTSRNCVPR17-NTIRE17
SelNetCVPR17-NTIRE17
TLSRCVPR17-NTIRE17
SRGANCVPR17Tensorflow1st proposed GAN
VESPCNCVPR17-VideoSR
MemNetICCV17Caffe 
SRDenseNetICCV17-, PyTorchDense
SPMCICCV17TensorflowVideoSR
EnhanceNetICCV17TensorFlowPerceptual Loss
PRSRICCV17TensorFlowan extension of PixelCNN
AffGANICLR17- 
MS-LapSRNTPAMI18MatlabFast LapSRN
DCSCNarXivTensorflow 
IDNCVPR18CaffeFast
DSRNCVPR18TensorFlowDual state,Recurrent
RDNCVPR18TorchDeep, BI-BD-DN
SRMDCVPR18MatlabDenoise/Deblur/SR
DBPNCVPR18PyTorchNTIRE18 Champion
WDSRCVPR18PyTorchTensorFlowNTIRE18 Champion
ProSRNCVPR18PyTorchNTIRE18
ZSSRCVPR18TensorflowZero-shot
FRVSRCVPR18PDFVideoSR
DUFCVPR18TensorflowVideoSR
TDANarXiv-VideoSR,Deformable Align
SFTGANCVPR18PyTorch 
CARNECCV18PyTorchLightweight
RCANECCV18PyTorchDeep, BI-BD-DN
MSRNECCV18PyTorch 
SRFeatECCV18TensorflowGAN
ESRGANECCV18PyTorchPRIM18 region 3 Champion
FEQEECCV18TensorflowFast
NLRNNIPS18TensorflowNon-local, Recurrent
SRCliqueNetNIPS18-Wavelet
CBDNetarXivMatlabBlind-denoise
TecoGANarXivTensorflowVideoSR GAN
RBPNCVPR19PyTorchVideoSR
SRFBNCVPR19PyTorchFeedback
MoreMNASarXiv-Lightweight,NAS
FALSRarXivTensorFlowLightweight,NAS
Meta-SRarXiv Arbitrary Magnification
AWSRNarXivPyTorchLightweight
OISRCVPR19PyTorchODE-inspired Network
DPSRCVPR19PyTorch 
DNICVPR19PyTorch 
MAANetarXiv Multi-view Aware Attention
RNANICLR19PyTorchResidual Non-local Attention
FSTRNCVPR19-VideoSR, fast spatio-temporal residual block
MsDNNarXivTensorFlowNTIRE19 real SR 21th place
SANCVPR19PytorchSecond-order Attention,cvpr19 oral
EDVRCVPR19PytorchVideo, NTIRE19 video restoration and enhancement champions
Ensemble for VSRCVPR19-VideoSR, NTIRE19 video SR 2nd place
TENetarXiv-a Joint Solution for Demosaicking, Denoising and Super-Resolution
MCANarXivPytorchMatrix-in-matrix CAN, Lightweight
IKC&SFTMDCVPR19-Blind Super-Resolution

Super Resolution survey:

[1] Wenming Yang, Xuechen Zhang, Yapeng Tian, Wei Wang, Jing-Hao Xue. Deep Learning for Single Image Super-Resolution: A Brief Review. arxiv, 2018. paper

[2]Saeed Anwar, Salman Khan, Nick Barnes. A Deep Journey into Super-resolution: A survey. arxiv, 2019.paper

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值