CF238_DIV1_C

题意是给一个无重边无自环的连通无向图,每次取出两条有公共点的边,求一种取边方案。无解时输出no solution。

很容易想,无解等价于边数为奇数。有解的时候靠构造。构造是一个猜想+调整的过程。

可以肯定的是,要对边遍历一遍。但是如果先匹配父亲的边再匹配儿子的边的话,可能会造成把原图分裂成两个子图并且有个子图边数为奇数进而导致无解的情况。

所以想到先匹配儿子的边,这样,父亲的边可以适时调整。需要注意的是,虽然是按边遍历,但是不能由儿子访问父亲,因为这样会输出重边。

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <queue>
#include <vector>
#include <stack>
#define  clr(A) memset(A,0,sizeof(A))
#define mm 100005
using namespace std;

typedef long long LL;
typedef pair<int, int > P;
vector<P> by[mm];
int ans[mm][3],c = 0;
vector<int> E[mm];
int vis[mm],used[mm];
int n,m;
int dfs(int pre,int cur)
{
    used[cur] = 1;
    for(int i = 0; i < by[cur].size();i++)
    {
        int u = by[cur][i].first, d = by[cur][i].second;
        if(vis[d]||used[u]) continue;     //边不能重复访问,不能访问祖先
        vis[d] = 1;
      //  printf("edge = %d %d\n",cur,u);
       if(dfs(cur,u)) E[cur].push_back(u);
    }
    used[cur] = 0;
    int i;
    for(i = 0; i+1<E[cur].size();i+=2)
    {
        ans[c][0] = E[cur][i];
        ans[c][1] = cur;
        ans[c][2] = E[cur][i+1];
        c++;
    }
    if(i<E[cur].size())  {
        ans[c][0] = pre;ans[c][1] = cur;ans[c++][2] = E[cur][i];
        E[cur].clear();return 0;
        }
    else {E[cur].clear();return 1;}     //E[cur]要清空一下,因为cur可能会再次被遍历,但E[cur]中的边已经用过。
}

int main()
{
    freopen("CF.in","r",stdin);
    scanf("%d%d",&n,&m);
    if(m & 1) {printf("No solution\n");return 0;}

         for(int i =1; i<=n;i++)
        if(!by[i].empty()) by[i].clear();
       for(int i =1; i<=n;i++)
        if(!E[i].empty()) E[i].clear();

    for(int i = m;i>=1;i--)
    {
        int a,b;
        scanf("%d%d",&a,&b);
        by[a].push_back(P(b,i));
        by[b].push_back(P(a,i));
     }
     clr(vis);
     dfs(-1,1);
     for(int i = 0;i<c;i++) printf("%d %d %d\n",ans[i][0],ans[i][1],ans[i][2]);
    return 0;
}




2025-06-12 10:19:35.256 ERROR 19812 --- [nio-8080-exec-1] c.e.a.exception.GlobalExceptionHandler : 服务器异常 org.springframework.jdbc.BadSqlGrammarException: ### Error querying database. Cause: org.postgresql.util.PSQLException: ERROR: column "fisc_div_code" does not exist Position: 1364 Where: referenced column: fiscaldivcode ### The error may exist in com/example/ayfinanceadmin/mapper/base/sysAdmAgencyMapper.java (best guess) ### The error may involve defaultParameterMap ### The error occurred while setting parameters ### SQL: SELECT chr_id,set_year,chr_code,disp_code,chr_name,level_num,is_leaf,enabled,create_date,create_user,latest_op_date,is_deleted,latest_op_user,chr_code1,chr_code2,chr_code3,chr_code4,chr_code5,rg_code,main_code,union_code,en_property,sort_property,en_charge,finance_charge,clerk,district_number,telephone,extension_number,address,manage_level,relation,parent_id,chr_id1,chr_id2,chr_id3,chr_id4,chr_id5,chr_code6,chr_code7,chr_code8,chr_code9,chr_id6,chr_id7,chr_id8,chr_id9,is_reform,start_date,end_date,secretdegree,isbudget,luload_mod,en_cf_mod,reserve_amt,reserve_start,reserve_used,mb_id,div_kind,div_fmkind,is_legalinc,en_type,editor,quic_code,is_gztf,trun_in_acct AS trInAcct,fina_level,is_self,co_type_code,post_code,url,enabled_ebank_date AS enabledDate,ebank_enterprise_no AS ebEnterpriseNo,enabled_ebank AS enabledBank,old_chr_id,hirer_id,co_fullname,last_ver,remark,co_name1,co_name2,co_name3,org_code,co_fzr_tel,cw_fzr_tel,acc_book_type_name,is_financial,is_budg AS isBu,is_acc,is_self2,budg_co_code AS buCoCode,budg_co_name AS buCoName,final_co_code,final_co_name,budg_level AS buLevel,fi_co_code,fi_co_dept_code,bm_co_code,is_enable,xxzx_charge,xxzx_charge_tel AS xxChargeTel,chr_fullname,parent_code,web_url,dist_code,agency_code,dist_name,ass_code,area_zone,currency_code,leader_charge,short_name,src_agency_code,fisc_div_id AS fiscalDivId,tutype,fisc_div_code AS fiscalDivCode FROM sys_adm_agency WHERE (chr_code = ? AND set_year = ? AND
06-13
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值