[数论] Codeforces Round #324 (Div. 2)D. Dima and Lisa

该博客讨论了如何将一个奇数表示为最多三个质数的和,以满足Dima和Lisa对于质数组合的爱好。题目描述了一个保证至少存在一种解决方案的问题,并提供了输入输出的格式要求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Dima loves representing an odd number as the sum of multiple primes, and Lisa loves it when there are at most three primes. Help them to represent the given number as the sum of at most than three primes.

More formally, you are given an odd numer n. Find a set of numbers pi (1 ≤ i ≤ k), such that

  1. 1 ≤ k ≤ 3
  2. pi is a prime

The numbers pi do not necessarily have to be distinct. It is guaranteed that at least one possible solution exists.

Input

The single line contains an odd number n (3 ≤ n < 109).

Output

In the first line print k (1 ≤ k ≤ 3), showing how many numbers are in the representation you found.

In the second line print numbers pi in any order. If there are multiple possible solutions, you can print any of them.

Sample test(s)
input
27
output
3
5 11 11
Note

A prime is an integer strictly larger than one that is divisible only by one and by itself.


数论:哥德巴赫猜想

任一大于2的偶数都可写成两个质数之和。

任一大于7的奇数都可写成三个素数之和。

如果n-2是素数,那么可以拆成2,n-2。否则拆成3个数 

#include <iostream>
#include <stdio.h>
#include <cstring>
#include <algorithm>
#include <set>
#include <map>
#include <vector>
#include <queue>
#include <fstream>
#include <math.h>
#include <iomanip>
#define read freopen("q.in","r",stdin)
using namespace std;
typedef long long LL;
#define INF 0x3fffffff
typedef pair<int, int> pii;
const int maxn = 300001;
const LL mod = 1000000007;

bool isp(int x)
{
    if(x==1)return false;
    for(int i=2;i*i<=x;i++)
        if(x%i==0)return false;
    return true;
}

int main()
{
    int n,i,j;
    while(~scanf("%d",&n))
    {
        int k=n-2;
        if(isp(n))printf("1\n%d\n",n);
        else if(isp(k))printf("2\n2 %d\n",k);
        else
        {
            int flag=0;
            for(i=3;i<=n && !flag;i+=2)
            {
                for(j=3;j<=n;j+=2)
                {
                    if(isp(i) && isp(j) && isp(n-i-j))
                    {
                        printf("3\n%d %d %d\n",i,j,n-i-j);
                        flag=1;
                        break;
                    }
                }
            }
        }

    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值