SPOJ4491. Primes in GCD Table(gcd(a,b)=d素数,(1<=a<=n,1<=b<=m))加强版

本文介绍了解决SPOJ4491.PrimesinGCDTable问题的方法,该问题是关于在一个由最大公约数构成的表格中计算素数出现次数的算法挑战。通过构建一个高效算法,文章详细解释了如何预先计算素数,并使用Mobius函数和前缀和技巧来快速得出答案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

SPOJ4491. Primes in GCD Table

 

Problem code: PGCD

 

Johnny has created a table which encodes the results of some operation -- a function of two arguments. But instead of a boring multiplication table of the sort you learn by heart at prep-school, he has created a GCD (greatest common divisor) table! So he now has a table (of height a and width b), indexed from (1,1) to (a,b), and with the value of field (i,j) equal to gcd(i,j). He wants to know how many times he has used prime numbers when writing the table.

Input

First, t ≤ 10, the number of test cases. Each test case consists of two integers, 1 ≤ a,b < 107.

Output

For each test case write one number - the number of prime numbers Johnny wrote in that test case.

Example

Input:
2
10 10
100 100
Output:
30
2791
 
 
 

 

 

 


一样的题,只不过 GCD(x,y) = 素数 .  1<=x<=a ; 1<=y<=b;

链接:http://www.spoj.com/problems/PGCD/ 

转载请注明出处:寻找&星空の孩子

 

详解:http://download.youkuaiyun.com/detail/u010579068/9034969

 

 

 

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;

const int maxn=1e7+5;
typedef long long LL;
LL pri[maxn],pnum;
LL mu[maxn];
LL g[maxn];
LL sum[maxn];
bool vis[maxn];

void mobius(int N)
{
    LL i,j;
    pnum=0;
    memset(vis,false,sizeof(vis));
    vis[1]=true;
    mu[1]=1;
    for(i=2; i<=N; i++)
    {
        if(!vis[i])//pri
        {
            pri[pnum++]=i;
            mu[i]=-1;
            g[i]=1;
        }
        for(j=0; j<pnum && i*pri[j]<=N ; j++)
        {
            vis[i*pri[j]]=true;
            if(i%pri[j])
            {
                mu[i*pri[j]]=-mu[i];
                g[i*pri[j]]=mu[i]-g[i];
            }
            else
            {
                mu[i*pri[j]]=0;
                g[i*pri[j]]=mu[i];
                break;//think...
            }
        }
    }
    sum[0]=0;
    for(i=1; i<=N; i++)
    {
        sum[i]=sum[i-1]+g[i];
    }
}
int main()
{
    mobius(10000000);
    int T;
    scanf("%d",&T);
    while(T--)
    {
        LL n,m;
        scanf("%lld%lld",&n,&m);
        if(n>m) swap(n,m);
        LL t,last,ans=0;
        for(t=1;t<=n;t=last+1)
        {
            last = min(n/(n/t),m/(m/t));
            ans += (n/t)*(m/t)*(sum[last]-sum[t-1]);
        }
        printf("%lld\n",ans);
    }
    return 0;
}


 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值