2325. String DistanceProblem code: STRDIST |
Let A = a1a2...ak and B = b1b2...bl be strings of lengths k and l, respectively. The string distance between A and B is defined in the following way (d[i,j] is the distance of substrings a1...ai and b1...bj, where 0 ≤ i ≤ k and 0 ≤ j ≤ l -- i or j being 0 represents the empty substring). The definition for d[i, j] is d[0, 0] = 0 and for (i, j) ≠ (0, 0) d[i, j] is the minimum of all that apply:
- d[i, j - 1] + 1, if j > 0
- d[i - 1, j] + 1, if i > 0
- d[i - 1, j - 1], if i > 0, j > 0, and ai = bj
- d[i - 1, j - 1] + 1, if i > 0, j > 0, and ai ≠ bj
- d[i - 2, j - 2] + 1, if i ≥ 2, j ≥ 2, ai = bj-1, and ai-1 = bj
The distance between A and B is equal to d[k,l].
For two given strings A and B, compute their distance knowing that it is not higher than 100.
Input
In the first line, k and l are given, giving the lengths of the strings A and B (1 ≤ k, l ≤ 105). In the second and third lines strings A and B, respectively, are given. A and B contain only lowercase letters of the English alphabet.
Output
In the first line, write one number, the distance between A and B, followed by a newline.
Example
Input: 8 8 computer kmpjutre Output: 4
题意:根据那几个要求转移dp值就好了...其实是一种旧的编辑距离问题
题解:首先数组肯定开不到10W*10W的,所以考虑用滚动数组,只需开3*10W就可以了,然后考虑到经常取模,所以开一个数组来保存取模的结果这样快点,不过10W*10W的dp转移还是会超时,但是题目有句很重要的话,说dp的值不会超过100,所以当里外循环的下标超过100的时候就相当于没有意义了,还有字符串相差超过100也没意义了,这里就是关键的剪枝了,剪了这里就可以过了~
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#define INF 999999
int dp[3][100005],mod[100005];
char a[100005],b[100005];
int MIN(int x,int y){ return x<y?x:y; }
int main()
{
int l,k,i,j,temp;
//freopen("t","r",stdin);
for(i=0;i<100005;i++) mod[i]=i%3;
while(scanf("%d%d",&k,&l)>0)
{
scanf("%s%s",a+1,b+1);
if(strlen(a)-strlen(b)>=100){ printf("100\n"); continue; }
if(strlen(b)-strlen(a)>=100){ printf("100\n"); continue; }
for(i=0;i<=l;i++) dp[0][i]=i;
for(i=1;i<=k;i++)
{
if(i>=100) j=i-100;
else j=0;
for(;j<=l;j++)
{
if(j-i>100) break;
temp=INF;
temp=MIN(temp,dp[mod[i-1]][j]+1);
if(j>0) temp=MIN(temp,dp[mod[i]][j-1]+1);
if(j>0)
{
if(a[i]==b[j]) temp=MIN(temp,dp[mod[i-1]][j-1]);
else temp=MIN(temp,dp[mod[i-1]][j-1]+1);
if(i>=2&&j>=2&&a[i]==b[j-1]&&a[i-1]==b[j]) temp=MIN(temp,dp[mod[i-2]][j-2]+1);
}
dp[mod[i]][j]=temp;
}
}
printf("%d\n",dp[mod[k]][l]);
}
return 0;
}