package com.zhp.first;
/**
* 高斯消去法和LU分解
*/
public class GSLU {
public static final int U = 0;
public static final int L = 1;
public static void main(String[] args) {
/*
* 解为:
x = 1, y = 0, z = -1
* 方程组:
2x - y + z = 1
4x + y - z = 5
x + y + z = 0
* 正确结果:
4.0 1.0 -1.0 5.0
0.0 -1.5 1.5 -1.5
0.0 0.0 2.0 -2.0
*/
double[][] A = new double[][] { { 2, 1, 0, 0 }, { 1, 0, 0, 1 }, { 0.5, 0.5, 1, 0 } };
double[][] U = new double[A.length][A.length];
U = Elimi(A, 0);
double[][] L = new double[A.length][A.length];
L = Elimi(A, 1);
System.out.println("矩阵U:");
Tools.showArray(U);
System.out.println("矩阵L:");
Tools.showArray(L);
}
/**
* mode = 0, U; mode = 1, L;
*/
public static double[][] Elimi(double[][] array, int mode) {
// 复制一个数组作为原数组a
double[][] a = new double[array.length][array[0].length];
for (int i = 0; i < a.length; i++) {
for (int j = 0; j < a[0].length; j++) {
a[i][j] = array[i][j];
}
}
int row = a.length; // 行数
double[][] L = new double[row][row];
// 把矩阵L的上三角赋值为0
for (int i = 0; i < row; i++) {
for (int j = i + 1; j < row; j++) {
L[i][j] = 0;
}
}
// 把矩阵L的对角线赋值为1
for (int i = 0; i < row; i++) {
L[i][i] = 1;
}
for (int i = 0; i < row; i++) {
int pivotrow = i;
// 找出当前列绝对值最大的数在哪一行(设为M)。 这是 “最大选主元法”
for (int j = i + 1; j < row; j++) {
if (Math.abs(a[j][i]) > Math.abs(a[pivotrow][i])) {
pivotrow = j;
}
}
// 把刚才找到的最大行(M),和当前行对调
for (int k = i; k < a[i].length; k++) {
double temp = a[i][k];
a[i][k] = a[pivotrow][k];
a[pivotrow][k] = temp;
}
for (int j = i + 1; j < row; j++) {
double scale = a[j][i] / a[i][i]; // 前面的步骤已经保证比值肯定小于1
L[j][i] = scale;
for (int k = i; k < a[i].length; k++) {
/*
* 该行第一个变为零,右侧元素按比例缩放 当前元素 = 当前元素-最大值*比例
*/
a[j][k] = a[j][k] - a[i][k] * scale;
}
}
}
if (mode == 0) {
return a;
} else {
return L;
}
}
}
package com.zhp.first;
/**
* 这是一个工具类
*/
public class Tools {
public static void main(String[] args) {
double[][] M = { { 1, 0, 0 }, { 2, 1, 0 }, { 0.5, 0.5, 1 } };
double[] b = { 1, 5, 0 };
double[] a = getA(M, b);
System.out.println("解为:");
showArray2(a);
}
/**
* 得到一个上三角矩阵的线性方程组的解 U is the up-triangle matrix
*/
public static double[] getAnswer(double[][] U) {
int row = U.length;
int col = U[0].length;
// 保存答案的数组
double[] a = new double[row];
// 获得最后一个答案
a[row - 1] = U[row - 1][col - 1] / U[row - 1][col - 2];
// 获得其他所有答案
for (int i = row - 2; i >= 0; i--) {
int start = i + 1;
int end = col - 2;
double sum = 0;
for (int j = start; j <= end; j++) {
sum += a[j] * U[i][j];
}
a[i] = (U[i][col - 1] - sum) / U[i][i];
}
return a;
}
/**
* [M][a] = [b] M 为一个行列式 a 是一个列向量 b 是一个列向量 求 a; 方法返回a;
*/
public static double[] getA(double[][] M, double[] b) {
double[] a = new double[b.length];
if (M.length != b.length) {
System.out.println("getA() 参数异常,M的行必须和b的行数相同");
return a;
}
double[][] tem = new double[M.length][M.length + 1];
for (int i = 0; i < M.length; i++) {
for (int j = 0; j < M[0].length; j++) {
tem[i][j] = M[i][j];
}
}
for (int i = 0; i < b.length; i++) {
tem[i][tem[i].length - 1] = b[i];
}
double[][] U = GSLU.Elimi(tem, GSLU.U);
a = getAnswer(U);
return a;
}
/** 输出一个二维数组 */
public static void showArray(double[][] a) {
for (int i = 0; i < a.length; i++) {
for (double tem : a[i]) {
System.out.print(tem + "\t");
}
System.out.println();
}
}
/** 输出一个一位数组 */
public static void showArray2(double[] a) {
for (double tem : a) {
System.out.print(tem + "\t");
}
}
}
package com.zhp.first;
/**
* 这个类是求矩阵的逆的
*/
public class Inverse {
public static void main(String[] args) {
double[][] A = new double[][] { { 1, 0, 1 }, { 0, 1, 0 }, { 1, 0, 1 } };
double[][] NI = getNi(A);
Tools.showArray(NI);
}
/**
* 求矩阵的逆
* 该方法并没有检测矩阵是否是非退化的矩阵
* 使用时若传入一个没有逆矩阵的矩阵,得到的结果是有误的
*/
public static double[][] getNi(double[][] a) {
int row = a.length;
int col = a[0].length;
if (row != col) {
System.out.println("矩阵的行列数不相等,没有逆矩阵!");
}
// 复制一下a
double[][] A = new double[row][col];
for (int i = 0; i < a.length; i++) {
for (int j = 0; j < a[0].length; j++) {
A[i][j] = a[i][j];
}
}
// 这里保存的是逆矩阵
double[][] NI = new double[col][row];
// 获得U和L
double[][] U = GSLU.Elimi(A, GSLU.U);
double[][] L = GSLU.Elimi(A, GSLU.L);
System.out.println("L:");
Tools.showArray(L);
System.out.println("-----------------\n");
// [U][Bi]=[Ii]
double[] Bi = new double[NI.length];
double[][] B = new double[Bi.length][row];
// LU A' = I >> LB = I
for (int i = 0; i < NI[0].length; i++) {
double[] b = new double[NI.length];
b[i] = 1;
Bi = Tools.getA(L, b);
System.out.println("Bi:");
Tools.showArray2(Bi);
System.out.println("\n-----------------\n");
System.out.println("b:");
Tools.showArray2(b);
System.out.println("\n----------------\n");
for (int j = 0; j < NI.length; j++) {
B[j][i] = Bi[j];
}
}
// UA' = B
for (int i = 0; i < B[0].length; i++) {
double[] b = new double[B.length];
for (int j = 0; j < b.length; j++) {
b[j] = B[j][i];
}
Bi = Tools.getA(U, b);
System.out.println("b:");
Tools.showArray2(b);
System.out.println("\n----------------\n");
for (int j = 0; j < NI.length; j++) {
NI[j][i] = Bi[j];
}
}
System.out.println("逆矩阵为:");
Tools.showArray(NI);
System.out.println("------------------");
return NI;
}
}