[leet code] Construct Binary Tree from Preorder and Inorder Traversal

本文介绍了一种通过给定的先序和中序遍历来构造二叉树的方法。该方法利用递归的方式找到根节点,并在中序遍历中确定左右子树的边界。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given preorder and inorder traversal of a tree, construct the binary tree.

Note:
You may assume that duplicates do not exist in the tree.

============

Analysis:

Exact the same idea as [leet code] Construct Binary Tree from Inorder and Postorder Traversal, except this time we use preorder array (from left to right) instead of postorder array (from right to left) to determine the current root node and in order array's split point.

/**
 * Definition for binary tree
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
public class Solution {
    public TreeNode buildTree(int[] preorder, int[] inorder) {
        return helper(preorder, 0, preorder.length-1, inorder, 0, inorder.length-1);   
    }
    
    public TreeNode helper(int[] preorder, int preLeft, int preRight, int[] inorder, int inLeft, int inRight){
        if(preLeft>preRight || inLeft>inRight) return null;
        
        TreeNode currNode = new TreeNode(preorder[preLeft]);
        
        int splitPoint = 0;
        for(int i=inLeft; i<=inRight; i++){
            if(inorder[i] == currNode.val) splitPoint = i;
        }
        
        currNode.left = helper(preorder, preLeft+1, preLeft+(splitPoint-inLeft), inorder, inLeft, splitPoint-1);
        currNode.right = helper(preorder, preLeft+(splitPoint-inLeft)+1, preRight, inorder, splitPoint+1, inRight);
        
        return currNode;
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值