操作格子

本文解析了一种在一维数组上进行多种操作的问题,包括修改指定位置的数值、求指定区间内的数值之和以及找到指定区间内的最大值。通过具体的输入输出示例详细展示了如何实现这些功能,并提供了一个简单的C语言程序作为解决方案。

问题描述
有n个格子,从左到右放成一排,编号为1-n。
共有m次操作,有3种操作类型:
1.修改一个格子的权值,
2.求连续一段格子权值和,
3.求连续一段格子的最大值。
对于每个2、3操作输出你所求出的结果。
输入格式
第一行2个整数n,m。
接下来一行n个整数表示n个格子的初始权值。
接下来m行,每行3个整数p,x,y,p表示操作类型,p=1时表示修改格子x的权值为y,p=2时表示求区间[x,y]内格子权值和,p=3时表示求区间[x,y]内格子最大的权值。
输出格式
有若干行,行数等于p=2或3的操作总数。
每行1个整数,对应了每个p=2或3操作的结果。
样例输入
4 3
1 2 3 4
2 1 3
1 4 3
3 1 4
样例输出
6
3
数据规模与约定
对于20%的数据n <= 100,m <= 200。
对于50%的数据n <= 5000,m <= 5000。
对于100%的数据1 <= n <= 100000,m <= 100000,0 <= 格子权值 <= 10000。

#include<stdio.h>
int main()
{
    int n,m,sum=0,max=0;
    scanf("%d%d",&n,&m);
    int a[n],p[m],x[m],y[m];
    for(int i=1; i<=n; i++)
    {
        scanf("%d",&a[i]);
    }
    for(int j=1; j<=m; j++)
    {
        scanf("%d%d%d",&p[j],&x[j],&y[j]);
    }
    for(int l=1; l<=m; l++)
    {
        if(p[l]==1)
        {
            a[x[l]]=y[l];
        }
        if(p[l]==2)
        {
            for(int q=x[l]; q<=y[l]; q++)
            {
                sum+=a[q];
            }
            printf("%d\n",sum);
        }
        if(p[l]==3)
        {
            for(int q=x[l]; q<=y[l]; q++)
            {
                if(max<a[q])
                {
                    max=a[q];
                }
            }
            printf("%d\n",max);
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值