新手上路,
文本分类中,我将一个文本用不同的嵌入得到不同的表示,代码如下
#第一种嵌入
sentence_input_pos = Input(shape=(MAX_TEXT_LENGTH,), dtype='int32')
embedded_sequences_pos = embedding_layer_pos(sentence_input_pos)
l_lstm_pos = Bidirectional(GRU(50, return_sequences=False))(embedded_sequences_pos)
#第二种嵌入
sentence_input = Input(shape=(MAX_TEXT_LENGTH,), dtype='int32')
embedded_sequences = embedding_layer(sentence_input)
l_lstm = Bidirectional(GRU(50, return_sequences=False))(embedded_sequences)
#拼接起来
concatenate = Lambda(lambda x :K.concatenate(x,-1))([l_lstm,l_lstm_pos])
preds = Dense(5, activation='softmax')(concatenate)
modelll = Model(inputs = [sentence_input_pos,sentence_input], outputs = preds)
print(modelll.summary())
plot_model(modelll, to_file='C:\Users\ycl\Desktop\Flatten.png', show_shapes=True)
sgd = optimizers.SGD(momentum=0.9)
modelll.compile(loss='categorical_crossentropy',
optimizer=sgd,
metrics=