mahout简介及安装配置

本文介绍了Mahout这一基于Hadoop的分布式机器学习平台,详细列举了其提供的多种算法,包括分类、聚类、关联规则挖掘等,并提供了从下载、安装到进行简单聚类分析的实践步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一. mahout简介:

Mahout 是一个很强大的数据挖掘工具,是一个分布式机器学习算法的集合,包括:被称为Taste的分布式协同过滤的实现、分类、聚类等。Mahout最大的优点就是基于Hadoop实现,把很多以前运行于单机上的算法,转化为了MapReduce模式,这样大大提升了算法可处理的数据量和处理性能。

以下为在mahout实现的机器学习算法:

算法类

算法名

中文名

分类算法

Logistic Regression

逻辑回归

Bayesian

贝叶斯

SVM

支持向量机

Perceptron

感知器算法

Neural Network

神经网络

Random Forests

随机森林

Restricted Boltzmann Machines

有限波尔兹曼机

聚类算法

Canopy Clustering

Canopy聚类

K-means Clustering

K均值算法

Fuzzy K-means

模糊K均值

Expectation Maximization

EM聚类(期望最大化聚类)

Mean Shift Clustering

均值漂移聚类

Hierarchical Clustering

层次聚类

Dirichlet Process Clustering

狄里克雷过程聚类

Latent Dirichlet Allocation

LDA聚类

Spectral Clustering

谱聚类

关联规则挖掘

Parallel FP Growth Algorithm

并行FP Growth算法

回归

Locally Weighted Linear Regression

局部加权线性回归

降维/维约简

Singular Value Decomposition

奇异值分解

Principal Components Analysis

主成分分析

Independent Component Analysis

独立成分分析

Gaussian Discriminative Analysis

高斯判别分析

进化算法

并行化了Watchmaker框架

 

推荐/协同过滤

Non-distributed recommenders

Taste(UserCF, ItemCF, SlopeOne

Distributed Recommenders

ItemCF

向量相似度计算

RowSimilarityJob

计算列间相似度

VectorDistanceJob

计算向量间距离

Map-Reduce算法

Hidden Markov Models

隐马尔科夫模型

集合方法扩展

Collections

扩展了JavaCollections

 

二. Mahout安装、配置 


1. 下载Mahout

http://archive.apache.org/dist/mahout/

 

2. 解压

tar -zxvf mahout-distribution-0.9.tar.gz

 

3. 配置环境变量

3.1、配置Mahout环境变量

# set mahout environment

export MAHOUT_HOME=/home/slshop/mahout/mahout-distribution-0.9

export PATH=$MAHOUT_HOME/conf:$MAHOUT_HOME/bin:$PATH

 

3.2、配置Mahout所需的Hadoop环境变量

 # set hadoop environment

export HADOOP_HOME=/home/slshop/hadoop/hadoop-2.7.2

export PATH=$PATH:$HADOOP_HOME/bin

 

4. 验证Mahout是否安装成功: 执行命令mahout。若列出一些算法,则成功

 

三. 使用Mahout之入门级使用

1. 启动Hadoop

2.下载测试数据 http://archive.ics.uci.edu/ml/databases/synthetic_control/   链接中的synthetic_control.data

 

3.上传测试数据 hadoop fs -putsynthetic_control.data /user/root/testdata

 

4. 使用Mahout中的kmeans聚类算法,执行命令:mahout -core org.apache.mahout.clustering.syntheticcontrol.kmeans.Job

 

5 查看聚类结果: 执行hadoop fs -ls /user/root/output

 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值