【转载于庄卓然长微博】 阿里2013年双十一准备中的技术突破与亮点

为迎接双十一购物狂欢节,阿里巴巴技术团队实施了一系列技术革新,包括全链路压测、CDN静态化及个性化算法优化等措施,旨在提升用户体验并确保系统稳定运行。

声明:

    【转载c.blog.sina.com.cn/profile.php?blogid=e59371cc890001rm

 

今年是双十一购物狂欢节的第五个年头,每一年这个时刻对于技术团队而言都是一次真刀实枪的数字战争。一方面,我们会提前在产品和业务层面努力创新,力争在当天为消费者留下更优质的购物体验。另一方面,全国人民的热情也是技术架构和细节不断优化的动力。下面我就简单介绍下,今年双十一的准备过程中技术上的一些突破和亮点。

全链路压测

      压力测试对于评估网站性能的重要性是不言而喻的,但是,无论是线下模拟的单一集群的压测,还是线上引流压测,都只是能够暴露一些基本的单点问题。对于双十一当天高峰期的真实压力模拟,这两种传统的压力测试方式还存在着巨大偏差。首先是业务处理链路的复杂性,对于像天猫这样的一个分布式处理平台,一笔交易的创建会涉及多个应用集群的处理,在能力评估时也应该考虑的是一个处理链路而不仅仅是单一应用集群的处理能力。其次是应用之外的风险点,像网络、DB等等,很难在传统压测中体现出来。

为了解决这些问题,今年阿里几个技术团队联合在一起,通过线上真实用户数据与人为测试数据相结合的方式,首次成功地在生产环境中模拟出相对真实的超大规模的访问流量,将前端系统、网络、DB等一整个系统环境完整地纳入压测范围,贴近实际的应用场景,为评估淘宝和天猫交易核心链路的实际承载能力提供有说服力的数据依据。一方面可以验证交易核心链路上各种限流和预案的准确性,另一方面也充分暴露了全链路上的各种瓶颈和隐藏风险点,让压力测试的工作真正落实到了确定性的层面上。

CDN静态化

很多浏览型业务,例如天猫详情页、店铺等,是典型的静态数据偏多,动态数据偏少的应用。对于这种类型的应用集群,去年我们在架构上的主要工作就是通过静态化实现了动静分离,静态数据缓存在本地缓存,动态数据异步进行加载。改造前后单机QPS提升了10倍。

今年上半年我们在这个基础上,将本地cache改造成了统一的集中式缓存,这样,一方面降低了各个应用接入和维护cache的成本,另一方面加强了失效机制实时性和监控的自动化,更重要的是大大提升了缓存的命中率。

除此之外,为了进一步解决主站容量瓶颈,在统一cache层之上,我们把静态HTML内容直接缓存在CDN上。这样,静态数据的访问完全不用回流到主站机房,在离用户最近的CDN节点就能完成,用户端的响应速度自然得到了大大的提升。当然这个实现的过程远没有说起来这么简单,中间很多技术的难点,例如商品信息变更如何实现秒级的主动失效,如何保证节点到主站之间的网络稳定等等,这里先卖个关子,大家可以期待下双十一之后阿里技术团队的详细分享。

个性化算法

个性化技术已经逐渐被证明可以有效提高电商网站的流量分配效率,让消费者更容易找到自己想要的商品和品牌,让长尾商品和商家有机会获得精准的流量。

今年双11是天猫第一次在大促中脚踏实地的实行个性化,从PC 到无线,从“会场”到“我的双11”,都可以看到个性化在无形中提升天猫的消费者购物体验,让有潜在需求的买家更容易找到心仪的宝贝。

对个性化引擎而言,由于要进行复杂的算法运算:用户实时意图计算、相关商品检索、CTR 预估、“推荐解释”等等,活动当天系统承担的技术挑战更大,为了解决系统方面的压力,我们一方面优化了算法,将更多的算法移植到离线平台计算,另一方面,通过CDN,将大部分Item Based 算法结果做了静态化处理,目前cache 比例可以达到90%左右,整个天猫个性化引擎的集群已经可以在当天负载近百万QPS的推荐服务。

同时,双11用户行为与平常差异性较大,使得基于机器学习的用户行为偏好,需要针对双11增加品牌折扣度等特有的特征修正训练目标,避免产生偏差(bias)。

另外,一般来说,算法调优都通过线上测试来进行效果评估,通常需要数天到数周的时间,但是双11只有一天的机会,为了充分保证算法的线上效果,我们设计了离线评估系统,离线模拟线上效果,减少了对线上真实流量的依赖,降低了线上风险。

从这几天预热期的效果来看,对比运营人员制作的活动页面,个性化技术已经将加入收藏夹和购物车的转化率提升30%以上。

讲了这么多,不知道大家是否对双十一当天更加期待了呢?

2012年的双十一,淘宝总交易金额191亿,订单1亿零580万笔,其中无线支付近900万笔,生成15TB日志,核心MySQL集群一天支持了20亿个事务。

今年,让我们拭目以待,新的技术记录的诞生!

                         ---天猫产品技术部总监:庄卓然

标题SpringBoot智能在线预约挂号系统研究AI更换标题第1章引言介绍智能在线预约挂号系统的研究背景、意义、国内外研究现状及论文创新点。1.1研究背景意义阐述智能在线预约挂号系统对提升医疗服务效率的重要性。1.2国内外研究现状分析国内外智能在线预约挂号系统的研究应用情况。1.3研究方法及创新点概述本文采用的技术路线、研究方法及主要创新点。第2章相关理论总结智能在线预约挂号系统相关理论,包括系统架构、开发技术等。2.1系统架构设计理论介绍系统架构设计的基本原则和常用方法。2.2SpringBoot开发框架理论阐述SpringBoot框架的特点、优势及其在系统开发中的应用。2.3数据库设计管理理论介绍数据库设计原则、数据模型及数据库管理系统。2.4网络安全数据保护理论讨论网络安全威胁、数据保护技术及其在系统中的应用。第3章SpringBoot智能在线预约挂号系统设计详细介绍系统的设计方案,包括功能模块划分、数据库设计等。3.1系统功能模块设计划分系统功能模块,如用户管理、挂号管理、医生排班等。3.2数据库设计实现设计数据库表结构,确定字段类型、主键及外键关系。3.3用户界面设计设计用户友好的界面,提升用户体验。3.4系统安全设计阐述系统安全策略,包括用户认证、数据加密等。第4章系统实现测试介绍系统的实现过程,包括编码、测试及优化等。4.1系统编码实现采用SpringBoot框架进行系统编码实现。4.2系统测试方法介绍系统测试的方法、步骤及测试用例设计。4.3系统性能测试分析对系统进行性能测试,分析测试结果并提出优化建议。4.4系统优化改进根据测试结果对系统进行优化和改进,提升系统性能。第5章研究结果呈现系统实现后的效果,包括功能实现、性能提升等。5.1系统功能实现效果展示系统各功能模块的实现效果,如挂号成功界面等。5.2系统性能提升效果对比优化前后的系统性能
在金融行业中,对信用风险的判断是核心环节之一,其结果对机构的信贷政策和风险控制策略有直接影响。本文将围绕如何借助机器学习方法,尤其是Sklearn工具包,建立用于判断信用状况的预测系统。文中将涵盖逻辑回归、支持向量机等常见方法,并通过实际操作流程进行说明。 一、机器学习基本概念 机器学习属于人工智能的子领域,其基本理念是通过数据自动学习规律,而非依赖人工设定规则。在信贷分析中,该技术可用于挖掘历史数据中的潜在规律,进而对未来的信用表现进行预测。 二、Sklearn工具包概述 Sklearn(Scikit-learn)是Python语言中广泛使用的机器学习模块,提供多种数据处理和建模功能。它简化了数据清洗、特征提取、模型构建、验证优化等流程,是数据科学项目中的常用工具。 三、逻辑回归模型 逻辑回归是一种常用于分类任务的线性模型,特别适用于二类问题。在信用评估中,该模型可用于判断借款人是否可能违约。其通过逻辑函数将输出映射为0到1之间的概率值,从而表示违约的可能性。 四、支持向量机模型 支持向量机是一种用于监督学习的算法,适用于数据维度高、样本量小的情况。在信用分析中,该方法能够通过寻找最佳分割面,区分违约非违约客户。通过选用不同核函数,可应对复杂的非线性关系,提升预测精度。 五、数据预处理步骤 在建模前,需对原始数据进行清理转换,包括处理缺失值、识别异常点、标准化数值、筛选有效特征等。对于信用评分,常见的输入变量包括收入水平、负债比例、信用历史记录、职业稳定性等。预处理有助于减少噪声干扰,增强模型的适应性。 六、模型构建验证 借助Sklearn,可以将数据集划分为训练集和测试集,并通过交叉验证调整参数以提升模型性能。常用评估指标包括准确率、召回率、F1值以及AUC-ROC曲线。在处理不平衡数据时,更应关注模型的召回率特异性。 七、集成学习方法 为提升模型预测能力,可采用集成策略,如结合多个模型的预测结果。这有助于降低单一模型的偏差方差,增强整体预测的稳定性准确性。 综上,基于机器学习的信用评估系统可通过Sklearn中的多种算法,结合合理的数据处理模型优化,实现对借款人信用状况的精准判断。在实际应用中,需持续调整模型以适应市场变化,保障预测结果的期有效性。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值