最近看数据结构,看到了堆排序,就想着来学习学习!
堆是一个近似完全二叉树的结构,并同时满足堆性质:即子结点的键值或索引总是小于(或者大于)它的父节点。
对于堆来说就是一个建立,一个删除。
而对于堆排序,其实就是删除节点的过程。对于n个关键字序列,最坏情况下每个节点需比较log2(n)次,因此其最坏情况下时间复杂度为nlogn。堆排序为不稳定排序,不适合记录较少的排序。
下面上代码:
<span style="font-size:18px;">#include "iostream"
using namespace std;
/////////////////////////////////////////////////////////////////////////////heap sort
bool HeapInsert(int heap[] , int i)//build heap
{
for(int j = (i - 1) / 2; (j >= 0 && i != 0) && (heap[i] < heap[j]); i = j, j = (i - 1) / 2)
swap(heap[i] , heap[j]);
return true;
}
bool HeapDelet(int heap[] ,int i, int n)//delete heap and adjust heap
{
int j = 2 * i + 1;
printf("%d " , heap[0]);
swap(heap[i] , heap[n]);
while(j < n){
if((heap[j] > heap[j + 1]) && (j + 1 < n)) ++ j;
if(heap[i] < heap[j]) return true;
swap(heap[i] , heap[j]);
i = j;
j = 2 * i + 1;
}
return true;
}
</span>
<span style="font-size:18px;"></span>
<span style="font-size:18px;">int main()
{
int num;
cin >> num;
int* heap = (int* )malloc(num * sizeof(int));
for(int i = 0; i < num; ++ i)</span>
<span style="font-size:18px;"> cin >> heap[i];
for(int i = 1; i < num; ++ i)
HeapInsert(heap , i);
for(int i = 0; i < num; ++ i){
printf("%d " , heap[i]);
}//显示堆建完后的结果</span>
<span style="font-size:18px;"> printf("\n");
for(int i = 0; i < num; ++ i){
HeapDelet(heap ,0, num - 1 - i);
}
return 0;
}</span>
结果如下: