一、对称矩阵(Symmetric Matrices)是指元素以主对角线为对称轴对应相等的矩阵。 对称矩阵是一个方形矩阵,其转置矩阵和自身相等。
如果有n阶矩阵A,其矩阵的元素都为实数,且矩阵A的转置等于其本身(aij=aji)(i,j为元素的脚标),则称A为实对称矩阵。比如:
A=[1272317111] A=\begin{bmatrix} 1 & 2&7\\ 2& 3&1\\ 7&1&11 \end {bmatrix} A=⎣⎡1272
一、对称矩阵(Symmetric Matrices)是指元素以主对角线为对称轴对应相等的矩阵。 对称矩阵是一个方形矩阵,其转置矩阵和自身相等。
如果有n阶矩阵A,其矩阵的元素都为实数,且矩阵A的转置等于其本身(aij=aji)(i,j为元素的脚标),则称A为实对称矩阵。比如:
A=[1272317111] A=\begin{bmatrix} 1 & 2&7\\ 2& 3&1\\ 7&1&11 \end {bmatrix} A=⎣⎡1272