Codeforces Round #204 (Div. 2) C. Jeff and Rounding

本文探讨了一种将实数序列转换为整数序列的过程,旨在最小化转换前后序列值之差的绝对值。通过连续执行特定操作来实现目标,最终输出最小差值并精确到小数点后三位。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

C. Jeff and Rounding
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Jeff got 2n real numbers a1, a2, ..., a2n as a birthday present. The boy hates non-integer numbers, so he decided to slightly "adjust" the numbers he's got. Namely, Jeff consecutively executes n operations, each of them goes as follows:

  • choose indexes i and j (i ≠ j) that haven't been chosen yet;
  • round element ai to the nearest integer that isn't more than ai (assign to ai⌊ ai ⌋);
  • round element aj to the nearest integer that isn't less than aj (assign to aj⌈ aj ⌉).

Nevertheless, Jeff doesn't want to hurt the feelings of the person who gave him the sequence. That's why the boy wants to perform the operations so as to make the absolute value of the difference between the sum of elements before performing the operations and the sum of elements after performing the operations as small as possible. Help Jeff find the minimum absolute value of the difference.

Input

The first line contains integer n (1 ≤ n ≤ 2000). The next line contains 2n real numbers a1a2...a2n (0 ≤ ai ≤ 10000), given with exactly three digits after the decimal point. The numbers are separated by spaces.

Output

In a single line print a single real number — the required difference with exactly three digits after the decimal point.

Sample test(s)
input
3
0.000 0.500 0.750 1.000 2.000 3.000
output
0.250
input
3
4469.000 6526.000 4864.000 9356.383 7490.000 995.896
output
0.279
Note

In the first test case you need to perform the operations as follows: (i = 1, j = 4)(i = 2, j = 3)(i = 5, j = 6). In this case, the difference will equal |(0 + 0.5 + 0.75 + 1 + 2 + 3) - (0 + 0 + 1 + 1 + 2 + 3)| = 0.25.


思路:

2n个数(设小数部分都看做x),n个向下取整,相对原来的数-x,n个向下取整,相对原来的数+(1-x),从两个式子中可以看出x的前面都是负号,所以可以统一处理,那么剩下来的就是统计1的个数cnt了。如果不出现a.000的情况的话,那么cnt=n,因为a.000如果向上取整的话是不需要+1的,所以统计出现a.000的次数num,那么+1的个数就在(max(0,n-num),n)之间了,取最佳ans就够了。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
//#pragma comment (linker,"/STACK:102400000,102400000")
#define maxn 100005
#define MAXN 100005
#define mod 1000000007
#define INF 0x3f3f3f3f
using namespace std;

typedef long long ll;
int n,m,cnt;
double ans,sum;

int main()
{
    int i,j,mi;
    ll t;
    double s,tmp;
    while(~scanf("%d",&n))
    {
        m=2*n;
        cnt=0;
        sum=0;
        for(i=1;i<=m;i++)
        {
            scanf("%lf",&s);
            t=ll(s);
            if(t==s) cnt++;
            else
            {
                tmp=s-t;
                sum+=tmp;
            }
        }
        mi=min(n,cnt);
        ans=INF;
        for(i=0;i<=mi;i++)
        {
            ans=min(ans,fabs(n-i-sum));
        }
        printf("%.3f\n",ans);
    }
    return 0;
}








评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值