LeetCode: Edit Distance of Two Words

本文介绍了解决两个字符串之间编辑距离问题的标准算法。通过使用动态规划方法,文章详细解释了如何计算从一个单词转换到另一个单词所需的最小操作步骤,包括插入、删除和替换字符等操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Edit Distance of the Two Words

Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)

You have the following 3 operations permitted on a word:

a) Insert a character
b) Delete a character
c) Replace a character

I remembered there is standard algorithm to solve this problem, discussed in courses like Natural Language Processing (see www.coursera.com)

Dynamic Programming will be used to solve this problem.

Basic Idea:

If we know the distance between word2[i-1] & word1[j-1], between word2[i] & word1[j-1], and between word2[i-1] & word1[j], then the distance between word2[i] & word1[j] will be

if(word2[i] == word1[j])

dist[i][j] = min(dist[i-1][j-1], min(dist[i-1][j], dist[i][j-1])+1)

else

dist[i][j] = min(dist[i-1][j-1], min(dist[i-1][j], dist[i][j-1])) + 1

Un-optimized code:

class Solution {
public:
    int minDistance(string word1, string word2) {
        // Start typing your C/C++ solution below
        // DO NOT write int main() function
        if(word2.length() == 0)
            return word1.length();
        if(word1.length() == 0)
            return word2.length();
        int word1Length = word1.length(), word2Length = word2.length();
        int ** matrix = new int *[word2Length];
        for(int i=0; i<word2Length; i++){
            matrix[i] = new int[word1Length];
        }
        if(word1[0] == word2[0])
            matrix[0][0] = 0;
        else
            matrix[0][0] = 1;
        for(int j=1; j<word1Length; j++){
            if(word1[j] == word2[0] && j<matrix[0][j-1] + 1)
                matrix[0][j] = j;
            else
                matrix[0][j] = matrix[0][j-1]+1;
        }
        for(int i=1; i<word2Length; i++){
            if(word2[i] == word1[0] && i<matrix[i-1][0] + 1)
                matrix[i][0] = i;
            else
                matrix[i][0] = matrix[i-1][0] + 1;
            for(int j=1; j<word1Length; j++){
                int temp = min(min(matrix[i-1][j], matrix[i][j-1]), matrix[i-1][j-1]);
                matrix[i][j] = temp + 1;
                if(word1[j] == word2[i] && matrix[i-1][j-1] < temp + 1)
                    matrix[i][j] = matrix[i-1][j-1];
            }
        }
        int ret = matrix[word2Length-1][word1Length-1];
        for(int i=0; i<word2Length; i++)
            delete[] matrix[i];
        delete[] matrix;
        return ret;
    }
};



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值