Codeforces Round #231 (Div. 2)B. Very Beautiful Number

本文介绍了一个有趣的数学问题,即如何找到最小的正整数,该整数恰好由p位十进制数字组成,并且当其最后一个数字移到最前面时,整个数会恰好扩大x倍。文章还提供了一种算法来解决这个问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

B. Very Beautiful Number
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Teacher thinks that we make a lot of progress. Now we are even allowed to use decimal notation instead of counting sticks. After the test the teacher promised to show us a "very beautiful number". But the problem is, he's left his paper with the number in the teachers' office.

The teacher remembers that the "very beautiful number" was strictly positive, didn't contain any leading zeroes, had the length of exactlyp decimal digits, and if we move the last digit of the number to the beginning, it grows exactly x times. Besides, the teacher is sure that among all such numbers the "very beautiful number" is minimal possible.

The teachers' office isn't near and the teacher isn't young. But we've passed the test and we deserved the right to see the "very beautiful number". Help to restore the justice, find the "very beautiful number" for us!

Input

The single line contains integers px (1 ≤ p ≤ 106, 1 ≤ x ≤ 9).

Output

If the teacher's made a mistake and such number doesn't exist, then print on a single line "Impossible" (without the quotes). Otherwise, print the "very beautiful number" without leading zeroes.

Sample test(s)
input
6 5
output
142857
input
1 2
output
Impossible
input
6 4
output
102564
Note

Sample 1: 142857·5 = 714285.

Sample 2: The number that consists of a single digit cannot stay what it is when multiplied by 2, thus, the answer to the test sample is "Impossible".


解题报告:

此题为推数字题。你只需要枚举最后一位数字(从1~9),然后得到相应的结果,而前一位的数是结果的上一次乘法得到的结果,这样就可以把满足这样的数推出来了。代码如下:

#include <iostream>
#include <cstdio>
using namespace std;
int a[1000010],b[1000010];
int main(){
    int m,n,tmp,flag;
    tmp=flag=0;
    scanf("%d%d",&m,&n);
    if(n==1&&m==1){
        printf("1\n");
        return 0;
    }
    for(int i=1;i<=9;i++){
            tmp=0;
        for(int j=1;j<=m;j++){
            if(j==1){
                a[j]=i;
                b[j]=(a[j]*n+tmp)%10;
                tmp=(i*n)/10;
            }
            else if(j!=1&&j!=m){
                a[j]=b[j-1];
                b[j]=(a[j]*n+tmp)%10;
                tmp=(a[j]*n+tmp)/10;
            }
            else if(j==m){
                a[j]=b[j-1];
                b[j]=(a[j]*n+tmp)%10;
                tmp=(a[j]*n+tmp)/10;
                if(tmp==0&&b[j]==a[1]&&a[j]>=1)
                    flag=1;
            }
        }
        if(flag)
            break;
    }
    if(flag){
        for(int i=m;i>=1;i--)
            printf("%d",a[i]);
        printf("\n");
    }
    else
        printf("Impossible\n");
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值