java synchronized

在java编程中,经常需要用到同步,而用得最多的也许是synchronized关键字了,下面看看这个关键字的用法。

因为synchronized关键字涉及到锁的概念,所以先来了解一些相关的锁知识。

 

java的内置锁:每个java对象都可以用做一个实现同步的锁,这些锁成为内置锁。线程进入同步代码块或方法的时候会自动获得该锁,在退出同步代码块或方法时会释放该锁。获得内置锁的唯一途径就是进入这个锁的保护的同步代码块或方法。

 

java内置锁是一个互斥锁,这就是意味着最多只有一个线程能够获得该锁,当线程A尝试去获得线程B持有的内置锁时,线程A必须等待或者阻塞,知道线程B释放这个锁,如果B线程不释放这个锁,那么A线程将永远等待下去。

 

java的对象锁和类锁:java的对象锁和类锁在锁的概念上基本上和内置锁是一致的,但是,两个锁实际是有很大的区别的,对象锁是用于对象实例方法,或者一个对象实例上的,类锁是用于类的静态方法或者一个类的class对象上的。我们知道,类的对象实例可以有很多个,但是每个类只有一个class对象,所以不同对象实例的对象锁是互不干扰的,但是每个类只有一个类锁。但是有一点必须注意的是,其实类锁只是一个概念上的东西,并不是真实存在的,它只是用来帮助我们理解锁定实例方法和静态方法的区别的

 

上面已经对锁的一些概念有了一点了解,下面探讨synchronized关键字的用法。

 

synchronized的用法:synchronized修饰方法和synchronized修饰代码块。

 

下面分别分析这两种用法在对象锁和类锁上的效果。

 

对象锁的synchronized修饰方法和代码块:
按 Ctrl+C 复制代码
按 Ctrl+C 复制代码
复制代码

1. test2 : 4  
2. test2 : 3  
3. test2 : 2  
4. test2 : 1  
5. test2 : 0  
6. test1 : 4  
7. test1 : 3  
8. test1 : 2  
9. test1 : 1  
10. test1 : 0  

复制代码

上述的代码,第一个方法时用了同步代码块的方式进行同步,传入的对象实例是this,表明是当前对象,当然,如果需要同步其他对象实例,也不可传入其他对象的实例;第二个方法是修饰方法的方式进行同步。因为第一个同步代码块传入的this,所以两个同步代码所需要获得的对象锁都是同一个对象锁,下面main方法时分别开启两个线程,分别调用test1和test2方法,那么两个线程都需要获得该对象锁,另一个线程必须等待。上面也给出了运行的结果可以看到:直到test2线程执行完毕,释放掉锁,test1线程才开始执行。(可能这个结果有人会有疑问,代码里面明明是先开启test1线程,为什么先执行的是test2呢?这是因为java编译器在编译成字节码的时候,会对代码进行一个重排序,也就是说,编译器会根据实际情况对代码进行一个合理的排序,编译前代码写在前面,在编译后的字节码不一定排在前面,所以这种运行结果是正常的, 这里是题外话,最主要是检验synchronized的用法的正确性)

如果我们把test2方法的synchronized关键字去掉,执行结果会如何呢?
复制代码

1.test1 : 4  
2.test2 : 4  
3.test2 : 3  
4.test1 : 3  
5.test1 : 2  
6.test2 : 2  
7.test2 : 1  
8.test1 : 1  
9.test2 : 0  
10.test1 : 0  

复制代码

上面是执行结果,我们可以看到,结果输出是交替着进行输出的,这是因为,某个线程得到了对象锁,但是另一个线程还是可以访问没有进行同步的方法或者代码。进行了同步的方法(加锁方法)和没有进行同步的方法(普通方法)是互不影响的,一个线程进入了同步方法,得到了对象锁,其他线程还是可以访问那些没有同步的方法(普通方法)。这里涉及到内置锁的一个概念(此概念出自java并发编程实战第二章):对象的内置锁和对象的状态之间是没有内在的关联的,虽然大多数类都将内置锁用做一种有效的加锁机制,但对象的域并不一定通过内置锁来保护。当获取到与对象关联的内置锁时,并不能阻止其他线程访问该对象,当某个线程获得对象的锁之后,只能阻止其他线程获得同一个锁。之所以每个对象都有一个内置锁,是为了免去显式地创建锁对象。

 

所以synchronized只是一个内置锁的加锁机制,当某个方法加上synchronized关键字后,就表明要获得该内置锁才能执行,并不能阻止其他线程访问不需要获得该内置锁的方法。

 

类锁的修饰(静态)方法和代码块:
复制代码

public class TestSynchronized   
2.{    
3.    public void test1()   
4.    {    
5.         synchronized(TestSynchronized.class)   
6.         {    
7.              int i = 5;    
8.              while( i-- > 0)   
9.              {    
10.                   System.out.println(Thread.currentThread().getName() + " : " + i);    
11.                   try   
12.                   {    
13.                        Thread.sleep(500);    
14.                   }   
15.                   catch (InterruptedException ie)   
16.                   {    
17.                   }    
18.              }    
19.         }    
20.    }    
21.      
22.    public static synchronized void test2()   
23.    {    
24.         int i = 5;    
25.         while( i-- > 0)   
26.         {    
27.              System.out.println(Thread.currentThread().getName() + " : " + i);    
28.              try   
29.              {    
30.                   Thread.sleep(500);    
31.              }   
32.              catch (InterruptedException ie)   
33.              {    
34.              }    
35.         }    
36.    }    
37.      
38.    public static void main(String[] args)   
39.    {    
40.         final TestSynchronized myt2 = new TestSynchronized();    
41.         Thread test1 = new Thread(  new Runnable() {  public void run() {  myt2.test1();  }  }, "test1"  );    
42.         Thread test2 = new Thread(  new Runnable() {  public void run() { TestSynchronized.test2();   }  }, "test2"  );    
43.         test1.start();    
44.         test2.start();    
45.//         TestRunnable tr=new TestRunnable();  
46.//         Thread test3=new Thread(tr);  
47.//         test3.start();  
48.    }   
49.    
50.}  

复制代码
复制代码

1.test1 : 4  
2.test1 : 3  
3.test1 : 2  
4.test1 : 1  
5.test1 : 0  
6.test2 : 4  
7.test2 : 3  
8.test2 : 2  
9.test2 : 1  
10.test2 : 0  

复制代码

其实,类锁修饰方法和代码块的效果和对象锁是一样的,因为类锁只是一个抽象出来的概念,只是为了区别静态方法的特点,因为静态方法是所有对象实例共用的,所以对应着synchronized修饰的静态方法的锁也是唯一的,所以抽象出来个类锁。其实这里的重点在下面这块代码,synchronized同时修饰静态和非静态方法
复制代码

public class TestSynchronized   
2.{    
3.    public synchronized void test1()   
4.    {    
5.              int i = 5;    
6.              while( i-- > 0)   
7.              {    
8.                   System.out.println(Thread.currentThread().getName() + " : " + i);    
9.                   try   
10.                   {    
11.                        Thread.sleep(500);    
12.                   }   
13.                   catch (InterruptedException ie)   
14.                   {    
15.                   }    
16.              }    
17.    }    
18.      
19.    public static synchronized void test2()   
20.    {    
21.         int i = 5;    
22.         while( i-- > 0)   
23.         {    
24.              System.out.println(Thread.currentThread().getName() + " : " + i);    
25.              try   
26.              {    
27.                   Thread.sleep(500);    
28.              }   
29.              catch (InterruptedException ie)   
30.              {    
31.              }    
32.         }    
33.    }    
34.      
35.    public static void main(String[] args)   
36.    {    
37.         final TestSynchronized myt2 = new TestSynchronized();    
38.         Thread test1 = new Thread(  new Runnable() {  public void run() {  myt2.test1();  }  }, "test1"  );    
39.         Thread test2 = new Thread(  new Runnable() {  public void run() { TestSynchronized.test2();   }  }, "test2"  );    
40.         test1.start();    
41.         test2.start();    
42.//         TestRunnable tr=new TestRunnable();  
43.//         Thread test3=new Thread(tr);  
44.//         test3.start();  
45.    }   
46.    
47.}  

 


1.test1 : 4  
2.test2 : 4  
3.test1 : 3  
4.test2 : 3  
5.test2 : 2  
6.test1 : 2  
7.test2 : 1  
8.test1 : 1  
9.test1 : 0  
10.test2 : 0  

复制代码

上面代码synchronized同时修饰静态方法和实例方法,但是运行结果是交替进行的,这证明了类锁和对象锁是两个不一样的锁,控制着不同的区域,它们是互不干扰的。同样,线程获得对象锁的同时,也可以获得该类锁,即同时获得两个锁,这是允许的。

 

到这里,对synchronized的用法已经有了一定的了解。这时有一个疑问,既然有了synchronized修饰方法的同步方式,为什么还需要synchronized修饰同步代码块的方式呢?而这个问题也是synchronized的缺陷所在

 

synchronized的缺陷:当某个线程进入同步方法获得对象锁,那么其他线程访问这里对象的同步方法时,必须等待或者阻塞,这对高并发的系统是致命的,这很容易导致系统的崩溃。如果某个线程在同步方法里面发生了死循环,那么它就永远不会释放这个对象锁,那么其他线程就要永远的等待。这是一个致命的问题。

 

当然同步方法和同步代码块都会有这样的缺陷,只要用了synchronized关键字就会有这样的风险和缺陷。既然避免不了这种缺陷,那么就应该将风险降到最低。这也是同步代码块在某种情况下要优于同步方法的方面。例如在某个类的方法里面:这个类里面声明了一个对象实例,SynObject so=new SynObject();在某个方法里面调用了这个实例的方法so.testsy();但是调用这个方法需要进行同步,不能同时有多个线程同时执行调用这个方法。

这时如果直接用synchronized修饰调用了so.testsy();代码的方法,那么当某个线程进入了这个方法之后,这个对象其他同步方法都不能给其他线程访问了。假如这个方法需要执行的时间很长,那么其他线程会一直阻塞,影响到系统的性能。

如果这时用synchronized来修饰代码块:synchronized(so){so.testsy();},那么这个方法加锁的对象是so这个对象,跟执行这行代码的对象没有关系,当一个线程执行这个方法时,这对其他同步方法时没有影响的,因为他们持有的锁都完全不一样。

 

不过这里还有一种特例,就是上面演示的第一个例子,对象锁synchronized同时修饰方法和代码块,这时也可以体现到同步代码块的优越性,如果test1方法同步代码块后面有非常多没有同步的代码,而且有一个100000的循环,这导致test1方法会执行时间非常长,那么如果直接用synchronized修饰方法,那么在方法没执行完之前,其他线程是不可以访问test2方法的,但是如果用了同步代码块,那么当退出代码块时就已经释放了对象锁,当线程还在执行test1的那个100000的循环时,其他线程就已经可以访问test2方法了。这就让阻塞的机会或者线程更少。让系统的性能更优越。

 

一个类的对象锁和另一个类的对象锁是没有关联的,当一个线程获得A类的对象锁时,它同时也可以获得B类的对象锁。
<think>嗯,用户问的是Java中的synchronized关键字,我得先回忆一下相关知识。首先,synchronized是用来处理多线程同步的,确保线程安全。应该从它的作用开始讲,比如同步方法、代码块,还有对象锁、类锁的区别。 然后,可能需要解释为什么需要synchronized,比如防止数据竞争,保证原子性、可见性、有序性。这里要联系到JMM(Java内存模型),不过用户可能不需要太深入,但至少得提到这些概念。 接下来,应用场景,比如实例方法同步、静态方法同步、同步代码块。要分别举例子说明,比如用synchronized修饰方法和代码块的区别,以及使用不同对象作为锁的情况。 还有需要注意的地方,比如锁的范围过大可能影响性能,或者死锁的问题。不过用户可能更关注基本用法,所以这部分可以简单带过,但还是要提醒注意事项。 用户可能对锁的机制不太清楚,比如对象监视器(monitor)的概念,每个对象都有一个monitor,进入synchronized块需要获取monitor的所有权。这部分需要解释清楚,但不要过于底层。 可能还需要比较一下synchronized和Lock接口的区别,比如synchronized是关键字,自动释放锁,而Lock需要手动释放,不过用户没有问这个,可能暂时不需要展开。 另外,要纠正一些常见的误解,比如synchronized只是锁对象,而不是代码。同一个对象的synchronized方法会被串行访问,不同对象则不会互相影响。静态方法锁的是类对象,所以所有实例都会被影响。 最后,总结一下使用synchronized的最佳实践,比如尽量减小同步范围,使用私有对象作为锁,避免锁住公共资源或类对象,除非必要。可能还要提到在Java 5之后synchronized的优化,比如偏向锁、轻量级锁、重量级锁的升级过程,但用户可能不需要太详细,所以简单提一下性能改进即可。 需要确保例子正确,比如同步代码块的写法,锁对象的使用。可能还要注意语法是否正确,比如synchronized后面的括号里的对象,或者直接修饰方法时的隐式锁对象。 总之,结构应该是先介绍synchronized的作用,然后用法,包括方法和代码块,再讲锁的机制,注意事项,最后应用场景和最佳实践。确保语言通俗易懂,例子清晰,避免过于技术化的术语,但又要准确。</think>Java 中的 `synchronized` 是用于实现线程同步的关键字,主要用于解决多线程环境下的**数据竞争**和**原子性**问题。以下是分步解析: --- ### 一、`synchronized` 的核心作用 1. **互斥访问** 确保同一时刻只有一个线程能访问被保护的代码或对象,避免并发修改导致数据不一致。 2. **内存可见性** 通过同步机制强制线程从主内存读取共享变量,而不是使用本地缓存。 3. **原子性** 保证同步代码块内的操作不可分割,要么全部执行,要么完全不执行。 --- ### 二、`synchronized` 的用法 #### 1. 同步实例方法 - **锁对象**:当前实例(`this`) - **适用场景**:保护实例变量的线程安全。 ```java public synchronized void add(int value) { this.count += value; } ``` #### 2. 同步静态方法 - **锁对象**:类的 `Class` 对象(如 `MyClass.class`) - **适用场景**:保护静态变量的线程安全。 ```java public static synchronized void staticMethod() { // 操作静态变量 } ``` #### 3. 同步代码块 - **锁对象**:可以是任意对象(建议用私有对象,避免外部干扰) - **适用场景**:减少锁的粒度,提升性能。 ```java private final Object lock = new Object(); public void doSomething() { synchronized(lock) { // 需要同步的代码 } } ``` --- ### 三、底层原理 1. **监视器锁(Monitor)** - 每个 Java 对象都与一个监视器关联。 - 线程进入 `synchronized` 块时,需先获取对象的监视器锁;退出时自动释放锁。 2. **字节码实现** - 通过 `monitorenter` 和 `monitorexit` 指令实现锁的获取和释放。 --- ### 四、注意事项 1. **锁的范围** 尽量缩小同步代码块的范围,避免不必要的性能损耗。 2. **死锁风险** 避免嵌套获取多个锁,或确保所有线程以相同顺序获取锁。 3. **锁对象的选择** - 不要使用字符串常量或基本类型包装类(如 `Integer`)作为锁。 - 建议用 `private final Object` 作为专用锁。 --- ### 五、典型应用场景 1. **单例模式的双重检查锁(Double-Checked Locking)** ```java public class Singleton { private static volatile Singleton instance; public static Singleton getInstance() { if (instance == null) { synchronized(Singleton.class) { if (instance == null) { instance = new Singleton(); } } } return instance; } } ``` 2. **线程安全的计数器** ```java public class Counter { private int count = 0; public synchronized void increment() { count++; } } ``` --- ### 六、与 `Lock` 的区别 | 特性 | `synchronized` | `Lock` | |--------------------|-------------------------|--------------------------| | 锁获取方式 | 自动获取和释放 | 需手动调用 `lock()`/`unlock()` | | 可中断性 | 不支持 | 支持 | | 公平性 | 非公平 | 可配置公平策略 | | 条件变量 | 通过 `wait()`/`notify()` | 通过 `Condition` 类 | --- ### 七、性能优化(Java 6+) - **锁升级机制**: 偏向锁 → 轻量级锁 → 重量级锁,根据竞争情况动态调整,减少锁开销。 --- 通过合理使用 `synchronized`,可以有效解决多线程并发问题,但需结合具体场景权衡性能与安全性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值