1.构建网络结构
from __future__ import print_function
import tensorflow as tf
import numpy as np
def layer(inputs, in_size, out_size, activation_function=None):
W = tf.Variable(tf.random_uniform([in_size, out_size]))
b = tf.Variable(tf.zeros([1, out_size]) + 0.1)
y_ = tf.matmul(inputs, W) + b
if activation_function is None:
outputs = y_
else:
outputs = activation_function(y_)
return outputs
x_data = np.linspace(-1, 1, 300)[:, np.newaxis]
noise = np.random.normal(0, 0.05, x_data.shape)
y_data = np.square(x_data) - 0.5 + noise
xs = tf.placeholder(tf.float32, [None, 1])
ys = tf.placeholder(tf.float32, [None, 1])
l1 = layer(xs, 1, 10, activation_function=tf.nn.relu)
y_pre = layer(l1, 10, 1, activation_function=None)
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - y_pre), reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
for i in range(1000):
sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
if i % 20 == 0:
print(sess.run(loss, feed_dict={xs: x_data, ys: y_data}))
2.数据可视化
from __future__ import print_function
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
def layer(inputs, in_size, out_size, activation_function=None):
W = tf.Variable(tf.random_uniform([in_size, out_size]))
b = tf.Variable(tf.zeros([1, out_size]) + 0.1)
y_ = tf.matmul(inputs, W) + b
if activation_function is None:
outputs = y_
else:
outputs = activation_function(y_)
return outputs
x_data = np.linspace(-1, 1, 300)[:, np.newaxis]
noise = np.random.normal(0, 0.05, x_data.shape)
y_data = np.square(x_data) - 0.5 + noise
xs = tf.placeholder(tf.float32, [None, 1])
ys = tf.placeholder(tf.float32, [None, 1])
l1 = layer(xs, 1, 10, activation_function=tf.nn.relu)
y_pre = layer(l1, 10, 1, activation_function=None)
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - y_pre), reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
ax.scatter(x_data,y_data)
plt.ion()
plt.show()
for i in range(1000):
sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
if i % 20 == 0:
prediction=sess.run(y_pre,feed_dict={xs:x_data,ys:y_data})
lines=ax.plot(x_data,prediction,'r_',lw=5)
plt.pause(0.1)
ax.lines.remove(lines[0])