题目:
Inversion
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)Total Submission(s): 73 Accepted Submission(s): 26
Problem Description
bobo has a sequence a
1,a
2,…,a
n. He is allowed to swap two
adjacent numbers for no more than k times.
Find the minimum number of inversions after his swaps.
Note: The number of inversions is the number of pair (i,j) where 1≤i<j≤n and a i>a j.
Find the minimum number of inversions after his swaps.
Note: The number of inversions is the number of pair (i,j) where 1≤i<j≤n and a i>a j.
Input
The input consists of several tests. For each tests:
The first line contains 2 integers n,k (1≤n≤10 5,0≤k≤10 9). The second line contains n integers a 1,a 2,…,a n (0≤a i≤10 9).
The first line contains 2 integers n,k (1≤n≤10 5,0≤k≤10 9). The second line contains n integers a 1,a 2,…,a n (0≤a i≤10 9).
Output
For each tests:
A single integer denotes the minimum number of inversions.
A single integer denotes the minimum number of inversions.
Sample Input
3 1 2 2 1 3 0 2 2 1
Sample Output
1 2
解题思路:
求出序列的逆序数,减去k即为所求结果。这里用O(n2)的算法会超时,我们只能用O(nlogn)的算法,可以用树状数组离散化求解,也可以用归并排序求解,ps:逆序数可能会超int范围。
代码:
#include<iostream>
#include<fstream>
using namespace std;
const int N=500005;
int a[N];
int t[N];
long long sum;
void copy(int *dest,int *src,int b,int e)
{
while(b<=e)
{
dest[b]=src[b];
b++;
}
}
void merge(int * a,int b,int m, int e)
{
int i=b;
int j=m+1;
int k=b;
while((i<=m)&&(j<=e))
{
if(a[i]<=a[j])
t[k++]=a[i++];
else
{
t[k++]=a[j++];
sum+=(m-i+1);
}
}
while(i<=m)
{
t[k++]=a[i++];
}
while(j<=e)
{
t[k++]=a[j++];
}
copy(a,t,b,e);
}
void mergesort(int * a,int i,int j)
{
if(i>=j)return;
int m=(i+j)/2;
mergesort(a,i,m);
mergesort(a,m+1,j);
merge(a,i,m,j);
}
int main()
{
int n, k;
std::ios::sync_with_stdio(false);
while(cin>>n>>k)
{
sum=0;
for(int i=0;i<n;i++)
cin>>a[i];
mergesort(a,0,n-1);
sum -= k;
if(sum < 0) sum = 0;
cout<< sum <<endl;
}
return 0;
}