题意:计算多边形的重心
解题:先找出凸包,再计算凸多边形重心
WA:数据类型
代码:
//uva10002 Center of Masses
//AC By Warteac
//Runtime:0.352s
//2013-5-17
/*
点的类型:double
凸包:按极角排序,极角相同的按照距离最左下点的距离从小到大排序
结果:只输出顶点,不输出边上的点
WA: 输入数据没有确定范围,PType的类型是int型时WA,把PType改为double型就可以AC
原因:可能是数据太大,(题目没有明显给出数据范围)叉积已经超出范围了> <!
*/
#include<iostream>
#include<cstdio>
#include<vector>
#include<stack>
#include <iomanip>
#include<algorithm>
#include<cmath>
using namespace std;
typedef double PType;//定义点的类型
typedef double CType;//定义重心点的类型
const double eps = 1e-20;
///////////////////////////////////////
struct Point{
PType x,y;
Point(PType a = 0, PType b = 0){x = a; y = b;}
void print(){cout << x << " " << y << endl;}
Point operator -(Point p){return Point(x - p.x, y - p.y);}
}pBase;//最左下的点
struct center{
CType x,y;
center(CType a = 0, CType b = 0){x = a; y = b;}
void print(){cout << x << " " << y << endl;}
};
typedef Point Vector;//向量
double direction(Vector v1,Vector v2){//求两个向量的叉积
return (v1.x*v2.y-v1.y*v2.x);
}
bool cmp(Point p1, Point p2){//比较函数
double d = direction(p1 - pBase, p2 - pBase);
if(fabs(d) < eps){//极角相同
return fabs(p1.x) < fabs(p2.x);//距原点的距离从小到大排
}else {
return d < eps;//按逆时针排序
}
}
bool grham_scan(vector <Point> p , vector <Point> &parray){//求凸包的算法
//find first point p0 with minimum y-coordinate or minimun x-coordinate if y are the same
int index = 0;
for(int i = 1; i < p.size(); i++){
if(p[i].y < p[index].y ||(p[i].y == p[index].y && p[i].x < p[index].x))
index = i;
}
swap(p[0],p[index]);
pBase = p[0];
sort(p.begin()+1,p.end(),cmp);
//for(int i = 0; i < p.size(); i++){
// p[i].print();
//}
//cout << endl;
//get the convex hull from p
parray.clear();
parray.push_back(p[0]);
parray.push_back(p[1]);
p.push_back(p[0]);
for(int i = 2; i < p.size(); i++){
Vector v1 (p[i].x - parray.back().x, p[i].y - parray.back().y);
Vector v2 (parray.back().x - (parray.end()-2)->x, parray.back().y - (parray.end()-2)->y);
double d = direction(v2,v1);
if(d < eps) {parray.push_back(p[i]);}
else if(d >= eps){ //Modify
parray.pop_back();i--;
}
}
return true;
}
center centerPoint(vector <Point> v){
double sumArea = 0;
double keciArea = 0;
double nx = 0,ny = 0;
for(int i = 1; i < v.size()-1; i++){
keciArea = direction(v[i+1] - pBase, v[i] - pBase) * 0.5;
sumArea += keciArea;
nx += (pBase.x + v[i].x + v[i+1].x)*keciArea;
ny += (pBase.y + v[i].y + v[i+1].y)*keciArea;
}
return center(nx/(3.0*sumArea),ny/(3.0*sumArea));
}
//////////////////////////////////////////////////////
int main(){
int sites;
PType x,y;
vector <Point> v;
Point t,mi;
while(cin >> sites && sites >= 3){
v.clear();
vector <Point> temp;//one convex hull
while(sites--){
cin >> t.x >> t.y;
v.push_back(t);
}
if(grham_scan(v,temp) == true){
//temp.pop_back();//去掉重复的最后一个点(头点)
//for(int i = 0; i < temp.size(); i++){
// temp[i].print();
//}
//cout << endl;
center c = centerPoint(temp);
cout << setiosflags(ios::fixed) << setprecision(3);
c.print();
}else{
cout << "no convex hull" << endl;
}
}
return 0;
}