找k个最近的实例投票决定新实例的类标
KNN是一种基于实例的学习算法,它不同于贝叶斯、决策树等算法,KNN不需要训练,当有新的实例出现时,直接在训练数据集中找k个最近的实例,把这个新的实例分配给这k个训练实例中实例数最多类。KNN也成为懒惰学习,它不需要训练过程,在类标边界比较整齐的情况下分类的准确率很高。KNN算法需要人为决定K的取值,即找几个最近的实例,k值不同,分类结果的结果也会不同。
K值的选取没有一个绝对的标准,但可以想象,K取太大并不能提高正确率,而且求K个最近的邻居是一个O(K*N)复杂度的算法,k太大,算法效率会更低。
虽然说K值的选取,会影响结果,有人会认为这个算法不稳定,其实不然,这种影响并不是很大,因为只有这种影响只是在类别边界上产生影响,而在类中心附近的实例影响很小
在数据集不均衡的情况下,可能需要按各类的比例决定投票,这样小类的正确率才不会过低。