在上一节中,我们对生日问题进行了严谨的阐述:假设屋子里面每个人的生日相互独立,而且等可能的出现在一年 365 天中的任何一天,试问我们需要多少人才能让某两个人的生日在同一天的概率超过 50%。
处理抽象逻辑问题的一个入手点就是先形象化,简单化和实例化。首先不难理解一年只有 365 天,如果屋子里有366 人,那么一定有两个人的出身日期在同一天,此时概率是 100%。如果屋子里只有 1 个人,那么有两个人同一天生日的概率就是 0。试想如果屋子里有 183 人(365 的一半),这些人的生日不重复,于是这种情况将 365 天分成了相当的两部分,一部分属于那 183 人的生日,另一部分不属于 183 人的生日,此时进入第 184 人,这个人的生日只有两种可能,落入第一部分或者第二部分,由于两部分的天数一样多,那么他落入哪一部分的可能性都相同也就是 50%,如果落入第一部分,那么我们就得到两个人有相同生日的情况。由此可见,确切的答案一定在[2,184]之间。
此外解决逻辑问题,特别是算法问题,还有一种有效方法就是暴力破解。也就是我们把所有可能的情况一一罗列出来,找出合适的那个,然后再看看有没有好的方法改进暴力破解法。假设屋子里有 n 人,那么我们罗列出他们所有可能的生日情况,把这些情况中有出现重复的部分抽取出来。在简单情况下,屋子里只有 2 人,每个人的生日可能是 365 天中某一天,于是这两个人可能的生日组合是 365 * 365 = 133,225种情况(注意问题假设,屋子里人的生日相互独立)。 在这么多种组合中,两个人生日在同一天的情况有多少种呢?如果第一个人选定某一天后,第二个人必须跟他一样,由于第一个人只有 365种选择,因此两人生日相同的情况有 365 * 1 = 356 ,于是屋子里有 2 个人时,出现同一天生日的概率是 365 / (365 * 365) = 1 / 365 = 0.27%.
如果屋子里有 3 个人,那么生日情况就有 365 * 365 * 365 = 48,627, 125 种。这种情况比较复杂的是,如何考虑有两个人出现重复生日的情况,稍微大意就会出错。这里我们虽然考虑有两个人生日相同,但如果 3 个人同时生日相同,这种情况也能满足题目要求,所以不能遗漏,3 个人生日相同的情况数量就是 365 * 1 * 1 = 365种。除去 3 人同时生日相同的情况后,我们就能考虑只有 2 人生日相同的情况,如果假设前两个人生日相同,第 3 个人与前两个人不同,那么满足条件的情况就是 365 * 1 * 364 = 132,860,同理第 2 第 3 人生日相同,但第一人与后两人不同的情况也是365 * 1 * 364 = 132,860,最后第 1,3 两人生日相同,第 2 个人跟其他两个不同的情况也是365 * 1 * 364 = 132,860,由此屋子里有 3 个人,其中出现两个人生日相同的情况总数就是 132,860 + 132,860+132,860 + 365,由此对应概率就是(132,860 + 132,860+132,860 + 365)/ 48,627, 125 = 0.82%。
我们上面的枚举方法非常容易出错。要不就是多算了某种情况,要不就是少算了某种情况。例如三个人有相同生日时,我们只能将其算一次,我们不能把他看成第一第二个人生日相同算一次,然后第二第三个人生日相