使用WGAN-GP算法构造精致人脸

在上一节中可以看到基于”推土距离“的WGAN网络能够有效生成马图片,但是网络构造能力有所不足,因此导致有些图片模糊,甚至有些图片连马的轮廓都没有构建出来,本节我们改进WGAN网络,让它具有更强大的图像生成能力。

在介绍WGAN网络算法时提到,如果把网络看成一个函数,那么网络要想具备好的图像生成能力就必须满足1-Lipshitz条件,也就是要满足公式:

屏幕快照 2020-05-08 上午10.06.59.png

根据微积分的中值定理,如果函数f(x)可导,那么对任意x1,x2,可以找到位于(x1,x2)之间的x3,使得如下公式成了:

屏幕快照 2020-05-08 上午10.09.44.png

将它带入到上面公式就有:
屏幕快照 2020-05-08 上午10.10.42.png
这意味着如果函数满足1-Lipshitz条件,那么它必须在定义域内的没一点都可导,而且其求倒数后的结果绝对值不能大于1,这是一个相当苛刻的条件。所以上一节描述WGAN网络时,算法作者想不到好的办法让构造的网络满足这个条件,于是”拍脑袋“想出了将网络内部参数的数值全部剪切到(-1,1)之间,这也是造成网络生成图像质量不好的原因。<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值