自动测试设备、仪器、精密医疗设备和过程控制都需要在转换器的激励放大器(运算放大器)与模数转换器 (ADC) 之间实现良好的噪声规格匹配。但由于运算放大器与 ADC 的规格存在不一致,因此设计人员如果不先了解正确的匹配方法,将很难找到正确的匹配。
我们都知道,在精密应用中,输入驱动网络产生的噪声低于紧随其后的 ADC,因此就噪声而言,转换器占主导地位。要实现良好匹配就要求运算放大器电路的噪声小于 ADC 噪声的三分之一。
然而,运算放大器的噪声规格是在放大器的频谱范围内,以电压噪声密度(伏特/√频率)和积分电压噪声 (Vrms) 的方式给出。而 ADC 的噪声单位仅使用分贝 (dB) 为单位的信噪比 (SNR) 规格来概括噪声。
正是由于规格单位上存在的这一差异,导致难以快速确定合适的放大器和 ADC 组合。
本文将简要讨论激励放大器(运算放大器)与 ADC 之间的噪声规格关系。在此讨论中,激励放大器和 ADC 的 SNR 定义均提供了足够的信息来确定器件的兼容性。之后,我们将使用运算放大器(Analog Devices 的 ADA4622-1ARZ)和 ADC(Maxim Integrated 的 MAX1156ETC+T)实例来演示在模拟域与数字域之间匹配噪声规格的评估方法。
SAR-ADC 驱动器电路
图 1 中的 SAR-ADC 驱动器电路配置带有增益为 -1 V/V 的放大器,用于驱动 ADC 输入 AIN+。

图 1:一个典型的 ADC 放大器驱动器电路原理图,图中所示 Analog Devices 的 ADA4622-1 运算放大器用来驱动 Maxim Integrated 的 MAX1156ETC+T ADC 的 AIN+ 输入。(图片来源:凯利讯半导体)
在此电路中,使用反向放大器配置是一项优势,因为放大器输入级的共模电压将保持固定的 2.5 V。
紧跟 ADA4622-1 放大器的是一个 250 kHz 的 1 阶滤波器。该滤波器的转折频率为 250 kHz,用于以 20dB/十倍程的斜率衰减高于该转折频率的信号。在此电路中,滤波器设计与 500 ksps 采样率的 MAX11156 奈奎斯特频率相匹配。滤波器功能降低了放大器的高频噪声。对于不同的 ADC 采样率,滤波器的转折频率始终等于 ADC 采样率除以二。
基于此电路系统,我们将噪声分析划分为两个块:运算放大器电路和 ADC。
运算放大器噪声
我们进行放大器噪声评估的最终目标是计算放大器的总输出 rms 噪声(包括 250 kHz 滤波器)。计算 rms 输出噪声系数与运算放大器的规格是相反的,后者的噪声参数是输入相关 (RTI) 的。在此评估中,放大器、Rg 和 Rf 电阻器以及 250 kHz 滤波器均包含在放大器噪声评估内。所有噪声贡献将会累加到一起,形成一个放大器输出噪声值。
增益放大器噪声
尽管放大器的信号增益等于 –1 V/V,但噪声增益却截然不同。在图 2 中进一步观察可见,放大器的噪声位置以图形形式明确地标示在了运算放大器的非反向输入端子上。

图 2:显示放大器噪声位于非反向输入端的放大器电路噪声源。(图片来源:凯利讯半导体)
该噪声对放大器输出产生增益,增益量为噪声增益 (1 + Rf/Rg)。由于 Rf 等于 Rg,因此噪声增益等于 2 V/V。
放大器的噪声规格始终是输入相关 (RTI) 的规格。器件规格表中的噪声性能标签包括电压噪声和电压噪声密度(图 3)。
<