PQ for ANN image retrieval

本文介绍了PQ(Product Quantization)技术在近似最近邻(ANN)图像检索中的作用,涉及Vector Quantization和K-Means。通过将特征分组并进行量化,PQ能够在保持检索质量的同时平衡内存和效率。此外,文章还简要提及了监督学习中的SVM应用。

近似最近邻检索

hash

PQ

Vector Quantization

这项技术广泛地用在信号处理以及数据压缩等领域。事实上,在 JPEG 和 MPEG-4 等多媒体压缩格式里都有 VQ 这一步。

Vector Quantization ,其实它本身并没有这么高深。大家都知道,模拟信号是连续的值,而计算机只能处理离散的数字信号,在将模拟信号转换为数字信号的时候,我们可以用区间内的某一个值去代替着一个区间,比如,[0, 1) 上的所有值变为 0 ,[1, 2) 上的所有值变成 1 ,如此类推。其这就是一个 VQ 的过程。一个比较正式一点的定义是:VQ 是将一个向量空间中的点用其中的一个有限子集来进行编码的过程。
这里写图片描述

一个典型的例子就是图像的编码。最简单的情况,考虑一个灰度图片,0 为黑色,1 为白色,每个像素的值为 [0, 1] 上的一个实数。现在要把它编码为 256 阶的灰阶图片,一个最简单的做法就是将每一个像素值 x 映射为一个整数 floor(x255) 。当然,原始的数据空间也并不以一定要是连续的。比如,你现在想要压缩这个图片,每个像素只使用 4 bit (而不是原来的 8 bit)来存储,因此,要将原来的 [0, 255] 区间上的整数值用 [0, 15] 上的整数值来进行编码,一个简单的映射方案是 x15/255 。

实际做法就是:将每个像素点当作一个数据,跑一下 K-means ,得到 k 个 centroids ,然后用这些 centroids 的像素值来代替对应的 cluster 里的所有点的像素值。对于彩色图片来说,也可以用同样的方法来做,例如 RGB 三色的图片,每一个像素被当作是一个 3 维向量空间中的点。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值