YOLOv8训练自定义数据集(超详细)

该文介绍了如何使用YOLOv8训练自己的数据集,包括环境配置、数据集准备、模型训练、训练过程的可视化、多卡训练、模型验证和测试、模型导出及格式转换等步骤。此外,文中还提到了训练过程中可能遇到的问题和解决方法。

借鉴 YOLOv8训练自己的数据集(超详细)_AI追随者的博客-优快云博客

一、准备训练环境

  1. 安装 requirements.txt

下载:https://raw.githubusercontent.com/ultralytics/ultralytics/main/requirements.txt

然后在你 目录下执行

pip install -r requirements.txt

它的 requirements 主要是以下 包,用下面代码检查下自己还缺哪些,补上就好。

pip show matplotlib         
pip show numpy              
pip show opencv-python      
pip show Pillow             
pip show PyYAML             
pip show requests           
pip show scipy              
pip show torch              
pip show torchvision        
pip show tqdm               
pip show tensorboard        
pip show pandas             
pip show seaborn            
pip show psutil 
pip show thop               
pip show certifi            

  1. 安装ultralytics

pip install ultralytics

二、 准备自己的数据集

dataSet
images
label
xml

先 把 用labelImage 标注 完的图片和xml文件 分别放到 images 和 xml 文件夹里,运行 split_train_val.py,切分好数据。再运行 voc2yolo.py ,把数据集格式转换成yolo_txt格式。

也可以通过聚类获得先验框

utils下有 autoanchor.py文件,那么就可以采用自动获取anchors。yolov8好像可以自动调用来获取先验框了,参考这篇

三、模型训练

1、下载预训练模型

在YOLOv8的GitHub开源网址上下载对应版本的模型

2、训练

接下来就可以开始训练模型了,命令如下:


评论 13
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

往事如yan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值