OpenCV学习笔记

CvScalar

定义可存放1—4个数值的数值,其结构如下。

typedef struct CvScalar
{
    double val[4];
}
CvScalar;

------------------------------------------------

CvScalar pt;

如果使用的图像是1通道的,则pt.val[0]中存储数据

如果使用的图像是3通道的,则pt.val[0],pt.val[1],pt.val[2]中存储数据

==============================

获得/更改图像像素参数值

cvGet2D 获得某个点的值, idx0=hight 行值, idx1=width 列值。
CVAPI(CvScalar) cvGet2D( const CvArr* arr, int idx0, int idx1 );
 -----------------------------------------------
cvSet2D 给某个点赋值。
CVAPI(void) cvSet2D( CvArr* arr, int idx0, int idx1, CvScalar value );

还有cvSet3D cvSetND

对于单通道我们有double cvmget( const CvMat* mat, int row, int col);

和  void cvSet2D(const CvMat* mat, int idx0, int idx1, double value);

二值化函数

Threshold

对数组元素进行固定阈值操作 事实上是对于单通道的数组进行处理,即src为单通道的

void cvThreshold( const CvArr* src, CvArr* dst, double threshold, double max_value, int threshold_type );

src
原始数组 (单通道 , 8-bit of 32-bit 浮点数).
dst
输出数组,必须与 src 的类型一致,或者为 8-bit.
threshold
阈值
max_value
使用 CV_THRESH_BINARY 和 CV_THRESH_BINARY_INV 的最大值.
threshold_type
阈值类型 (见讨论)

函数 cvThreshold 对单通道数组应用固定阈值操作。该函数的典型应用是对灰度图像进行阈值操作得到二值图像。(cvCmpS 也可以达到此目的) 或者是去掉噪声,例如过滤很小或很大象素值的图像点。本函数支持的对图像取阈值的方法由 threshold_type 确定:

threshold_type=CV_THRESH_BINARY:

dst(x,y) = max_value, if src(x,y)>threshold ;=0, otherwise.

threshold_type=CV_THRESH_BINARY_INV:

dst(x,y) = 0, if src(x,y)>threshold; dst(x,y) = max_value, otherwise.

threshold_type=CV_THRESH_TRUNC:

dst(x,y) =

max_value,

 if src(x,y)>threshold;   dst(x,y) = src(x,y), otherwise.

threshold_type=CV_THRESH_TOZERO:

dst(x,y) = src(x,y), if (x,y)>threshold ;  dst(x,y) = 0, otherwise.

threshold_type=CV_THRESH_TOZERO_INV:

dst(x,y) = 0, if src(x,y)>threshold ;  dst(x,y) = src(x,y), otherwise.

自适应二值化函数---效果比较好

void cvAdaptiveThreshold(xxxxxx)



图像保存函数cvSaveImage(),需要include "highgui.h",具体参数如下:
int cvSaveImage( const char* filename, const CvArr* image);
filename:文件名,如果对应文件名存在将自动覆盖
image:想要存储的图片

函数cvSaveImage保存图像到指定文件。图像格式的的选择依赖于filename的扩展名,请参考cvLoadImage。只有8位单通道或者3通道(通道顺序为'BGR' )可以使用这个函数保存。如果格式,深度或者通道不符合要求,请先用cvCvtScale 和cvCvtColor转换;或者使用通用的cvSave保存图像为XML或者YAML格式。

内容概要:本文提出了一种基于融合鱼鹰算法和柯西变异的改进麻雀优化算法(OCSSA),用于优化变分模态分解(VMD)的参数,进而结合卷积神经网络(CNN)与双向长短期记忆网络(BiLSTM)构建OCSSA-VMD-CNN-BILSTM模型,实现对轴承故障的高【轴承故障诊断】基于融合鱼鹰和柯西变异的麻雀优化算法OCSSA-VMD-CNN-BILSTM轴承诊断研究【西储大学数据】(Matlab代码实现)精度诊断。研究采用西储大学公开的轴承故障数据集进行实验验证,通过优化VMD的模态数和惩罚因子,有效提升了信号分解的准确性与稳定性,随后利用CNN提取故障特征,BiLSTM捕捉时间序列的深层依赖关系,最终实现故障类型的智能识别。该方法在提升故障诊断精度与鲁棒性方面表现出优越性能。; 适合人群:具备一定信号处理、机器学习基础,从事机械故障诊断、智能运维、工业大数据分析等相关领域的研究生、科研人员及工程技术人员。; 使用场景及目标:①解决传统VMD参数依赖人工经验选取的问题,实现参数自适应优化;②提升复杂工况下滚动轴承早期故障的识别准确率;③为智能制造与预测性维护提供可靠的技术支持。; 阅读建议:建议读者结合Matlab代码实现过程,深入理解OCSSA优化机制、VMD信号分解流程以及CNN-BiLSTM网络架构的设计逻辑,重点关注参数优化与故障分类的联动关系,并可通过更换数据集进一步验证模型泛化能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值