一个经典的RNN结构如下图所示:
假设我们的时间序列只有三段, S0S_0S0为给定值,神经元没有激活函数,则RNN最简单的前向传播过程如下:S1=WxX1+WsS0+b1O1=WoS1+b2S_{1}=W_{x} X_{1}+W_{s} S_{0}+b_{1} O_{1}=W_{o} S_{1}+b_{2}S1=WxX1+WsS0+b1O1=WoS1+b2S2=WxX2+WsS1+b1O2=WoS2+b2S_{2}=W_{x} X_{2}+W_{s} S_{1}+b_{1} O_{2}=W_{o} S_{2}+b_{2}S2=WxX2+WsS1+b1O2=WoS2+b2S3=WxX3+WsS2+b1O3=WoS3+b2S_{3}=W_{x} X_{3}+W_{s} S_{2}+b_{1} O_{3}=W_{o} S_{3}+b_{2}S3=WxX3+WsS2+b1O3=WoS3+b2 假设在t=3时刻,损失函数为L3=12(Y3−O3)2L_{3}=\frac{1}{2}\left(Y_{3}-O_{3}\right)^{2}L3=21(Y3−O3)2。则对于一次训练任务的损失函数为L=∑t=0TLtL=\sum_{t=0}^{T} L_{t}L=t=0∑TLt即每一时刻损失值的累加。使用随机梯度下降法训练RNN其实就是对WxW_xWx、WsW_sWs、WoW_oWo 以及b1b_1b1、b2b_2b2求偏导,并不断调整它们以使LLL尽可能达到最小的过程。现在假设我们我们的时间序列只有三段,t1t_1t1,t2t_2t2,t3t_3t3。我们只对t3t_3t3时刻的WxW_xWx、WsW_sWs、WoW_oWo 求偏导(其他时刻类似):∂L3∂W0=∂L3∂O3∂O3∂Wo\frac{\partial L_{3}}{\partial W_{0}}=\frac{\partial L_{3}}{\partial O_{3}} \frac{\partial O_{3}}{\partial W_{o}}∂W0∂L3=∂O3∂L3∂Wo∂O3∂L3∂Wx=∂L3∂O3∂O3∂S3∂S3∂Wx+∂L3∂O3∂O3∂S3∂S3∂S2∂S2∂Wx+∂L3∂O3∂O3∂S3∂S3∂S2∂S2∂S1∂S1∂Wx\frac{\partial L_{3}}{\partial W_{x}}=\frac{\partial L_{3}}{\partial O_{3}} \frac{\partial O_{3}}{\partial S_{3}} \frac{\partial S_{3}}{\partial W_{x}}+\frac{\partial L_{3}}{\partial O_{3}} \frac{\partial O_{3}}{\partial S_{3}} \frac{\partial S_{3}}{\partial S_{2}} \frac{\partial S_{2}}{\partial W_{x}}+\frac{\partial L_{3}}{\partial O_{3}} \frac{\partial O_{3}}{\partial S_{3}} \frac{\partial S_{3}}{\partial S_{2}} \frac{\partial S_{2}}{\partial S_{1}} \frac{\partial S_{1}}{\partial W_{x}}∂Wx∂L3=∂O3∂L3∂S3∂O3∂Wx∂S3+∂O3∂L3∂S3∂O3∂S2∂S3∂Wx∂S2+∂O3∂L3∂S3∂O3∂S2∂S3∂S1∂S2∂Wx∂S1∂L3∂Ws=∂L3∂O3∂O3∂S3∂S3∂Ws+∂L3∂O3∂O3∂S3∂S3∂S2∂S2∂Ws+∂L3∂O3∂O3∂S3∂S3∂S2∂S2∂S1∂S1∂Ws\frac{\partial L_{3}}{\partial W_{s}}=\frac{\partial L_{3}}{\partial O_{3}} \frac{\partial O_{3}}{\partial S_{3}} \frac{\partial S_{3}}{\partial W_{s}}+\frac{\partial L_{3}}{\partial O_{3}} \frac{\partial O_{3}}{\partial S_{3}} \frac{\partial S_{3}}{\partial S_{2}} \frac{\partial S_{2}}{\partial W_{s}}+\frac{\partial L_{3}}{\partial O_{3}} \frac{\partial O_{3}}{\partial S_{3}} \frac{\partial S_{3}}{\partial S_{2}} \frac{\partial S_{2}}{\partial S_{1}} \frac{\partial S_{1}}{\partial W_{s}}∂Ws∂L3=∂O3∂L3∂S3∂O3∂Ws∂S3+∂O3∂L3∂S3∂O3∂S2∂S3∂Ws∂S2+∂O3∂L3∂S3∂O3∂S2∂S3∂S1∂S2∂Ws∂S1
可以看出对于 WoW_oWo 求偏导并没有长期依赖,但是对于WxW_xWx、WsW_sWs求偏导,会随着时间序列产生长期依赖。因为 StS_tSt 随着时间序列向前传播,而StS_tSt又是 WxW_xWx、WsW_sWs的函数。
根据上述求偏导的过程,我们可以得出任意时刻对 WxW_xWx、WsW_sWs求偏导的公式:∂Lt∂Wx=∑k=0t∂Lt∂Ot∂Ot∂St(∏j=k+1t∂Sj∂Sj−1)∂Sk∂Wx\frac{\partial L_{t}}{\partial W_{x}}=\sum_{k=0}^{t} \frac{\partial L_{t}}{\partial O_{t}} \frac{\partial O_{t}}{\partial S_{t}}\left(\prod_{j=k+1}^{t} \frac{\partial S_{j}}{\partial S_{j-1}}\right) \frac{\partial S_{k}}{\partial W_{x}}∂Wx∂Lt=k=0∑t∂Ot∂Lt∂St∂Ot⎝⎛j=k+1∏t∂Sj−1∂Sj⎠⎞∂Wx∂Sk任意时刻对WsW_sWs 求偏导的公式同上。
如果再加上激活函数:Sj=tanh(WxXj+WsSj−1+b1)S_{j}=\tanh \left(W_{x} X_{j}+W_{s} S_{j-1}+b_{1}\right)Sj=tanh(WxXj+WsSj−1+b1)。其中tanh′=[0,1]\tanh ^{\prime}=[0,1]tanh′=[0,1]f(z)=tanh(z)f(z)=\tanh (z)f(z)=tanh(z)f(z)′=1−(f(z))2f(z)^{\prime}=1-(f(z))^{2}f(z)′=1−(f(z))2激活函数tanh和它的导数图像如下:
由上图可以看出tanh′≤1\tanh ^{\prime} \leq 1tanh′≤1,对于训练过程大部分情况下tanh的导数是小于1的,因为很少情况下会出现WxXj+WsSj−1+b1=0W_{x} X_{j}+W_{s} S_{j-1}+b_{1}=0WxXj+WsSj−1+b1=0,如果WsW_sWs也是一个大于0小于1的值,则当ttt很大时∏j=k+1ttanh′Ws\prod_{j=k+1}^{t} \tanh ^{\prime} W_{s}j=k+1∏ttanh′Ws会趋于0,和0.01500.01^{50}0.0150趋近于0是一个概念,同理当WsW_sWs很大时,∏j=k+1ttanh′Ws\prod_{j=k+1}^{t} \tanh ^{\prime} W_{s}∏j=k+1ttanh′Ws会趋于无穷。这就是RNN中梯度消失和爆炸的原因。
至于怎么避免这种现象,让我在看看就是∂Lt∂Wx=∑k=0t∂Lt∂Ot∂Ot∂St(∏j=k+1t∂Sj∂Sj−1)∂Sk∂Wx\frac{\partial L_{t}}{\partial W_{x}}=\sum_{k=0}^{t} \frac{\partial L_{t}}{\partial O_{t}} \frac{\partial O_{t}}{\partial S_{t}}\left(\prod_{j=k+1}^{t} \frac{\partial S_{j}}{\partial S_{j-1}}\right) \frac{\partial S_{k}}{\partial W_{x}}∂Wx∂Lt=k=0∑t∂Ot∂Lt∂St∂Ot⎝⎛j=k+1∏t∂Sj−1∂Sj⎠⎞∂Wx∂Sk梯度消失和爆炸的根本原因就是∏j=k+1t∂Sj∂Sj−1\prod_{j=k+1}^{t} \frac{\partial S_{j}}{\partial S_{j-1}}j=k+1∏t∂Sj−1∂Sj这一坨,要消除这种情况就需要把这一坨在求偏导的过程中去掉,至于怎么去掉,一种办法就是使 ∂Sj∂Sj−1≈1或者∂Sj∂Sj−1≈0\frac{\partial S_{j}}{\partial S_{j-1}} \approx 1或者\frac{\partial S_{j}}{\partial S_{j-1}} \approx 0∂Sj−1∂Sj≈1或者∂Sj−1∂Sj≈0其实这就是LSTM做的事情。
总结:
梯度消失:一句话,RNN梯度消失是因为激活函数tanh函数的倒数在0到1之间,反向传播时更新前面时刻的参数时,当参数W初始化为小于1的数,则多个(tanh函数’ * W)相乘,将导致求得的偏导极小(小于1的数连乘),从而导致梯度消失。
梯度爆炸:当参数初始化为足够大,使得tanh函数的导数乘以W大于1,则将导致偏导极大(大于1的数连乘),从而导致梯度爆炸。