Let's go,Garbage Collector(十)

If you are allocating an array using new, then you must tell GCPtr this fact by specifying its size when the GCPtr pointer to that array is declared. For example, here is the way to allocate an array of five doubles:

GCPtr<double, 5> pda = new double[5];

The size must be specified for two reasons. First, it tells the GCPtr constructor that this object will point to an allocated array, which causes the isArray field to be set to true. When isArray is true, the collect( ) function frees memory by using delete[ ], which releases a dynamically allocated array, rather than delete, which releases only a single object. Therefore, in this example, when pda goes out of scope, delete[ ] is used and all five elements of pda are freed. Ensuring that the correct number of objects are freed is especially important when arrays of class objects are allocated. Only by using delete[ ] can you know that the destructor for each object will be called.

The second reason that the size must be specified is to prevent an out-of-bounds element from being accessed when an Iter is used to cycle through an allocated array. Recall that the size of the array (stored in arraySize) is passed by GCPtr to Iter’s constructor whenever an Iter is needed.

Be aware that nothing enforces the rule that an allocated array be operated on only through a GCPtr that has been specified as pointing to an array. This is solely your responsibility.

Once you have allocated an array, there are two ways you can access its elements. First, you can index the GCPtr that points to it. Second, you can use an iterator. Both methods are shown here.

Using Array Indexing

 

// Demonstrate indexing a GCPtr.
#include <iostream>
#include <new>
#include "gc.h"
using namespace std;
int main() {
 
try {
    // Create a GCPtr to an allocated array of 10 ints.
   
GCPtr<int, 10> ap = new int[10];
   
// Give the array some values using array indexing.
    for(int i=0; i < 10; i++)
      ap[i] = i;
   
// Now, show the contents of the array.
    for(int i=0; i < 10; i++)
      cout << ap[i] << " ";
   
cout << endl;
 
} catch(bad_alloc exc) {
    cout << "Allocation failure!/n";
    return 1;
 
}
 
return 0;
}
The output, with the display option off, is shown here:

0 1 2 3 4 5 6 7 8 9

Because a GCPtr emulates a normal C++ pointer, no array bounds checking is performed, and it is possible to overrun or under run the dynamically allocated array. So, use the same care when accessing an array through a GCPtr as you do when accessing an array through a normal C++ pointer.

Using Iterators

 

Here is the previous program reworked to use an iterator. Recall that the easiest way to obtain an iterator to a GCPtr is to use GCiterator, which is a typedef inside GCPtr that is automatically bound to the generic type T.

// Demonstrate an iterator.
#include <iostream>
#include <new>
#include "gc.h"
using namespace std;
int main() {
 
try {
    // Create a GCPtr to an allocated array of 10 ints.  
    GCPtr<int, 10> ap = new int[10];
   
// Declare an int iterator.
   
GCPtr<int>::GCiterator itr;
   
// Assign itr a pointer to the start of the array.
   
itr = ap.begin();
   
// Give the array some values using array indexing.
    for(unsigned i=0; i < itr.size(); i++)
      itr[i] = i;
   
// Now, cycle through array using the iterator.
    for(itr = ap.begin(); itr != ap.end(); itr++)
      cout << *itr << " ";
   
cout << endl;
 
} catch(bad_alloc exc) {
   
cout << "Allocation failure!/n";
   
return 1;
  } catch(OutOfRangeExc exc) {
    cout << "Out of range access!/n";
    return 1;
 
}
  return 0;
}

On your own, you might want to try incrementing itr so that it points beyond the boundary of the allocated array. Then try accessing the value at that location. As you will see, an OutOfRangeExc is thrown. In general, you can increment or decrement an iterator any way you like without causing an exception. However, if it is not pointing within the underlying array, attempting to obtain or set the value at that location will cause a boundary error.

Using GCPtr with Class Types

GCPtr is used with class types in just the same way it is used with built-in types. For example, here is a short program that allocates objects of MyClass:

// Use GCPtr with a class type.
#include <iostream>
#include <new>
#include "gc.h"
using namespace std;
class MyClass {
  int a, b;
public:
  double val;
 
MyClass() { a = b = 0; }
 
MyClass(int x, int y) {
    a = x;
    b = y;
    val = 0.0;
 
}
 
~MyClass() {
    cout << "Destructing MyClass(" <<
         a << ", " << b << ")/n";
  }
 
int sum() {
    return a + b;
  }
 
friend ostream &operator<<(ostream &strm, MyClass &obj);
};
// An overloaded inserter to display MyClass.
ostream &operator<<(ostream &strm, MyClass &obj) {
  strm << "(" << obj.a << " " << obj.b << ")";
  return strm;
}
int main() {
  try {
    GCPtr<MyClass> ob = new MyClass(10, 20);
   
// Show value via overloaded inserter.
    cout << *ob << endl;
   
// Change object pointed to by ob.
    ob = new MyClass(11, 21);
   
cout << *ob << endl;
   
// Call a member function through a GCPtr.
    cout << "Sum is : " << ob->sum() << endl;
   
// Assign a value to a class member through a GCPtr.  
    ob->val = 98.6;
    cout << "ob->val: " << ob->val << endl;
   
cout << "ob is now " << *ob << endl;
  } catch(bad_alloc exc) {
   
cout << "Allocation error!/n";
   
return 1;
  }
 
return 0;
}

Notice how the members of MyClass are accessed through the use of the –> operator. Remember, GCPtr defines a pointer type. Thus, operations through a GCPtr are performed in exactly the same fashion that they are with any other pointer.

The output from the program, with the display option turned off, is shown here:

(10 20)
(11 21)
Sum is : 32
ob->val: 98.6
ob is now (11 21)
Destructing MyClass(11, 21)
Destructing MyClass(10, 20)

Pay special attention to the last two lines. These are output by ~MyClass( ) when garbage is collected. Even though only one GCPtr pointer was created, two MyClass objects were allocated. Both of these objects are represented by entries in the garbage collection list. When ob is destroyed, gclist is scanned for entries having a reference count of zero. In this case, two such entries are found, and the memory to which they point is deleted.

 
Although array indexing is certainly a convenient method of cycling through an allocated array, it is not the only method at your disposal. For many applications, the use of an iterator will be a better choice because it has the advantage of preventing boundary errors. Recall that for GCPtr, iterators are objects of type Iter. Iter supports the full complement of pointer operations, such as ++. It also allows an iterator to be indexed like an array.
The following program creates a GCPtr to a 10-element array of ints. It then allocates that array and initializes it to the values 0 through 9. Finally, it displays those values. It performs these actions by indexing the GCPtr.
源码来自:https://pan.quark.cn/s/a4b39357ea24 ### 操作指南:洗衣机使用方法详解#### 1. 启动与水量设定- **使用方法**:使用者必须首先按下洗衣设备上的“启动”按键,同时依据衣物数量设定相应的“水量选择”旋钮(高、中或低水量)。这一步骤是洗衣机运行程序的开端。- **运作机制**:一旦“启动”按键被触发,洗衣设备内部的控制系统便会启动,通过感应器识别水量选择旋钮的位置,进而确定所需的水量高度。- **技术执行**:在当代洗衣设备中,这一流程一般由微处理器掌管,借助电磁阀调控进水量,直至达到指定的高度。#### 2. 进水过程- **使用说明**:启动后,洗衣设备开始进水,直至达到所选的水位(高、中或低)。- **技术参数**:水量的监测通常采用浮子式水量控制器或压力感应器来实现。当水位达到预定值时,进水阀会自动关闭,停止进水。- **使用提醒**:务必确保水龙头已开启,并检查水管连接是否牢固,以防止漏水。#### 3. 清洗过程- **使用步骤**:2秒后,洗衣设备进入清洗环节。在此期间,滚筒会执行一系列正转和反转的动作: - 正转25秒 - 暂停3秒 - 反转25秒 - 再次暂停3秒- **重复次数**:这一系列动作将重复执行5次,总耗时为280秒。- **技术关键**:清洗环节通过电机驱动滚筒旋转,利用水流冲击力和洗衣液的化学效果,清除衣物上的污垢。#### 4. 排水与甩干- **使用步骤**:清洗结束后,洗衣设备会自动进行排水,将污水排出,然后进入甩干阶段,甩干时间为30秒。- **技术应用**:排水是通过泵将水抽出洗衣设备;甩干则是通过高速旋转滚筒,利用离心力去除衣物上的水分。- **使用提醒**:...
代码下载地址: https://pan.quark.cn/s/c289368a8f5c 在安卓应用开发领域,构建一个高效且用户友好的聊天系统是一项核心任务。 为了协助开发者们迅速达成这一目标,本文将分析几种常见的安卓聊天框架,并深入说明它们的功能特性、应用方法及主要优势。 1. **环信(Easemob)** 环信是一个专为移动应用打造的即时通讯软件开发套件,涵盖了文本、图片、语音、视频等多种消息形式。 通过整合环信SDK,开发者能够迅速构建自身的聊天平台。 环信支持消息内容的个性化定制,能够应对各种复杂的应用场景,并提供多样的API接口供开发者使用。 2. **融云(RongCloud)** 融云作为国内领先的IM云服务企业,提供了全面的聊天解决方案,包括一对一交流、多人群聊、聊天空间等。 融云的突出之处在于其稳定运行和高并发处理性能,以及功能完备的后台管理工具,便于开发者执行用户管理、消息发布等操作。 再者,融云支持多种消息格式,如位置信息、文件传输、表情符号等,显著增强了用户聊天体验。 3. **Firebase Cloud Messaging(FCM)** FCM由Google提供的云端消息传递服务,可达成安卓设备与服务器之间的即时数据交换。 虽然FCM主要应用于消息推送,但配合Firebase Realtime Database或Firestore数据库,开发者可以开发基础的聊天软件。 FCM的显著优势在于其全球性的推送网络,保障了消息能够及时且精确地传输至用户。 4. **JMessage(极光推送)** 极光推送是一款提供消息发布服务的软件开发工具包,同时具备基础的即时通讯能力。 除了常规的文字、图片信息外,极光推送还支持个性化消息,使得开发者能够实现更为复杂的聊天功能。 此...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值