Java8新特性之lambda表达式

本文详细介绍了Java8中的函数式接口与Lambda表达式的概念及其应用。通过具体示例,解释了函数式接口(SAM类型接口)如何与Lambda表达式结合使用,使代码更加简洁高效。

demo示例:

lambda概念详解:
 
这里来讲解一下Java8 新特性中的函数式接口, 以及和Lambda 表达式的关系。看到过很多不少介绍Java8特性的文章,都会介绍到函数式接口和lambda表达式,但是都是分别介绍,没有将两者的关系说明清楚,在这里,把自己的理解整理如下:
 
一、函数式接口:
  函数式接口其实本质上还是一个接口,但是它是一种特殊的接口:SAM类型的接口(Single Abstract Method)。定义了这种类型的接口,使得以其为参数的方法,可以在调用时,使用一个lambda表达式作为参数。从另一个方面说,一旦我们调用某方法,可以传入lambda表达式作为参数,则这个方法的参数类型,必定是一个函数式的接口,这个类型必定会使用@FunctionalInterface进行修饰。
  从SAM原则上讲,这个接口中,只能有一个函数需要被实现,但是也可以 有如下例外:
    1. 默认方法与静态方法并不影响函数式接口的契约,可以任意使用,即
      函数式接口中可以有静态方法,一个或者多个静态方法不会影响SAM接口成为函数式接口,并且静态方法可以提供方法实现
      可以由 default 修饰的默认方法方法,这个关键字是Java8中新增的,为的目的就是使得某一些接口,原则上只有一个方法被实现,但是由于历史原因,不得不加入一些方法来兼容整个JDK中的API,所以就需要使用default关键字来定义这样的方法
    2. 可以有 Object 中覆盖的方法,也就是 equals,toString,hashcode等方法。
  JDK中以前所有的函数式接口都已经使用 @FunctionalInterface 定义,可以通过查看JDK源码来确认,以下附JDK 8之前已有的函数式接口:
            java.lang.Runnable
            java.util.concurrent.Callable
            java.security.PrivilegedAction
            java.io.FileFilter
            java.nio.file.PathMatcher 
            java.lang.reflect.InvocationHandler
            java.beans.PropertyChangeListener
            java.awt.event.ActionListener  
            javax.swing.event.ChangeListener
如:
@FunctionalInterface
public interface Runnable {
/**
* When an object implementing interface <code>Runnable</code> is used
* to create a thread, starting the thread causes the object's
* <code>run</code> method to be called in that separately executing
* thread.
* <p>
* The general contract of the method <code>run</code> is that it may
* take any action whatsoever.
*
* @see java.lang.Thread#run()
*/
public abstract void run();
}
以下为一个自定义函数式接口的 示例:
定义:
@FunctionalInterface
interface Converter<F, T> {

T convert(F from);

}
使用:
Converter<String, Integer> converter = (from) -> Integer.valueOf(from);

Integer converted = converter.convert("123");
注: 方法和构造函数引用在Java8中可以通过 :: 操作符调用
 
  自行设计的方法中, 如果可以接收 lambda 表达式, 则可以使用 Function 作为参数, 如下为一些已经实现的函数式接口:
// Function<T, R> -T作为输入,返回的R作为输出
Function <String,String> function = (x) -> {System.out.print(x+": "); return "Function" ;};

System.out.println(function.apply( "hello world" ));


// Predicate<T> -T作为输入,返回的boolean值作为输出
Predicate <String> pre = (x) ->{System.out.print(x); return false ;};

System.out.println( ": "+pre.test("hello World" ));


// Consumer<T> - T作为输入,执行某种动作但没有返回值
Consumer <String> con = (x) -> {System.out.println(x);};

con.accept( "hello world" );


// Supplier<T> - 没有任何输入,返回T
Supplier <String> supp = () -> { return "Supplier" ;};

System.out.println(supp.get());


// BinaryOperator<T> -两个T作为输入,返回一个T作为输出,对于“reduce”操作很有用
BinaryOperator <String> bina = (x,y) ->{System.out.print(x+" "+y); return "BinaryOperator" ;};

System.out.println( " "+bina.apply("hello ","world"));
 
二、Lambda表达式(这里只是简单提一下)
书写方法:  e -> System.out.println( e )
    1. 三部分构成
        参数列表
        符号 ->
        函数体 : 有多个语句,可以用{} 包括, 如果需要返回值且只有一个语句,可以省略 return
    2. 访问控制:
        可以访问类的成员变量和局部变量(非final会自动隐含转为final)
下载方式:https://pan.quark.cn/s/a4b39357ea24 布线问题(分支限界算法)是计算机科学和电子工程领域中一个广为人知的议题,它主要探讨如何在印刷电路板上定位两个节点间最短的连接路径。 在这一议题中,电路板被构建为一个包含 n×m 个方格的矩阵,每个方格能够被界定为可通行或不可通行,其核心任务是定位从初始点到最终点的最短路径。 分支限界算法是处理布线问题的一种常用策略。 该算法与回溯法有相似之处,但存在差异,分支限界法仅需获取满足约束条件的一个最优路径,并按照广度优先或最小成本优先的原则来探索解空间树。 树 T 被构建为子集树或排列树,在探索过程中,每个节点仅被赋予一次成为扩展节点的机会,且会一次性生成其全部子节点。 针对布线问题的解决,队列式分支限界法可以被采用。 从起始位置 a 出发,将其设定为首个扩展节点,并将与该扩展节点相邻且可通行的方格加入至活跃节点队列中,将这些方格标记为 1,即从起始方格 a 到这些方格的距离为 1。 随后,从活跃节点队列中提取队首节点作为下一个扩展节点,并将与当前扩展节点相邻且未标记的方格标记为 2,随后将这些方格存入活跃节点队列。 这一过程将持续进行,直至算法探测到目标方格 b 或活跃节点队列为空。 在实现上述算法时,必须定义一个类 Position 来表征电路板上方格的位置,其成员 row 和 col 分别指示方格所在的行和列。 在方格位置上,布线能够沿右、下、左、上四个方向展开。 这四个方向的移动分别被记为 0、1、2、3。 下述表格中,offset[i].row 和 offset[i].col(i=0,1,2,3)分别提供了沿这四个方向前进 1 步相对于当前方格的相对位移。 在 Java 编程语言中,可以使用二维数组...
源码来自:https://pan.quark.cn/s/a4b39357ea24 在VC++开发过程中,对话框(CDialog)作为典型的用户界面组件,承担着与用户进行信息交互的重要角色。 在VS2008SP1的开发环境中,常常需要满足为对话框配置个性化背景图片的需求,以此来优化用户的操作体验。 本案例将系统性地阐述在CDialog框架下如何达成这一功能。 首先,需要在资源设计工具中构建一个新的对话框资源。 具体操作是在Visual Studio平台中,进入资源视图(Resource View)界面,定位到对话框(Dialog)分支,通过右键选择“插入对话框”(Insert Dialog)选项。 完成对话框内控件的布局设计后,对对话框资源进行保存。 随后,将着手进行背景图片的载入工作。 通常有两种主要的技术路径:1. **运用位图控件(CStatic)**:在对话框界面中嵌入一个CStatic控件,并将其属性设置为BST_OWNERDRAW,从而具备自主控制绘制过程的权限。 在对话框的类定义中,需要重写OnPaint()函数,负责调用图片资源并借助CDC对象将其渲染到对话框表面。 此外,必须合理处理WM_CTLCOLORSTATIC消息,确保背景图片的展示不会受到其他界面元素的干扰。 ```cppvoid CMyDialog::OnPaint(){ CPaintDC dc(this); // 生成设备上下文对象 CBitmap bitmap; bitmap.LoadBitmap(IDC_BITMAP_BACKGROUND); // 获取背景图片资源 CDC memDC; memDC.CreateCompatibleDC(&dc); CBitmap* pOldBitmap = m...
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值