24754 Studio 2: Specialisation

Java Python SUBJECT OUTLINE

24754 Studio 2: Specialisation

Spring 2024

Subject description

The Specialisation Studio will allow students to apply their analytics skills, to an area of analytics, and take students through all the steps required in a business analytics project. In this studio, student teams will be provided with some real-world tasks and problems, from a range of industries (e.g. Finance, Marketing and Health). Students will choose an area that interests them and will develop a solution that effectively communicates the results.

Subject learning objectives (SLOs)

Upon successful completion of this subject students should be able to:

1. apply multiple data analytic techniques to data in order to convey recommendations that are actionable in a local

and international setting

2. analyse assumptions of data analytics techniques that can affect the representation of cultural groups

3. evaluate data analysis techniques for decision making

4. assess the data analysis process to ensure that it is performed professionally and ethically and takes into account indigenous values

5. apply advanced data analytic techniques to business problems to extract meaningful insights from complex contexts

Course intended learning outcomes (CILOs)

This subject also contributes specifically to the following program learning objectives:

Research, identify and evaluate the assumptions implicit in data and apply analytical techniques to facilitate business decision making (1.1)

Critically evaluate and apply professional ethical standards, the principles of sustainability, social responsibility, and Indigenous values as business analysts (3.1)

Integrate advanced data analysis techniques with business practices to generate actionable knowledge to inform. and facilitate effective decision-making in local and international contexts (4.1)

Contribution to the development of graduate attributes

This studio is designed to help students integrate and apply knowledge from their previous subject’s data analytics and present results. The students will write a report based on the findings that convey key recommendations and extract insights from data. Students will be expected to discern and evaluate what are the appropriate analytical techniques to be used with different types of data.

Students’ understandings of issues regarding representation of cultural groups in data analytics will be developed, and ethical issues in data analytics will be discussed.

This subject is aligned with the following graduate attributes:

Intellectual rigour and innovative problem solving

Social responsibility and cultural awareness

Professional and technical competence

Teaching and learning strategies

This subject synthesises knowledge acquired in different subjects from the Business Analytics course.

Students will also use appropriate statistical software such as R and SAS, to complete assigned tasks. The project will be an authentic assessment using problems from industry partners.

The subject is taught by academic staff as well as industry professionals in an interactive setting. Both academic and industry staff will help guide and facilitate discussions in class as well as using webinar technologies.

Students are required to watch assigned videos and read specified articles and case study material in preparation for each class. These learning materials will be available on the subject webpages on the learning management system.

Students will be involved in active learning experiences during class. These experiences will be completed in collaboration with other students and will provide students with the opportunity to obtain in-class peer feedback on their learning as well as direct feedback from their lecturer. Additionally, feedback will be given to students online via video conferencing (e.g. Skype, Zoom) during times specified by the lecturer.

An aim of this subject is to help you develop academic and professional language and communication skills to succeed at university and in the workplace. During the course of this subject, you will complete a milestone assessment task that will, in addition to assessing your subject-specific learning objectives, assess your English language proficiency.

Content (topics)

Using software to analyse data

Effective report writing

Problem Solving

Critical Thinking

Determining Key Insights

Teamwork Skills

Assessment

Assessment task 1: Project Report and Analysis

Objective(s): This addresses subject learning objective(s): 1, 3 and 5

This addresses program learning objectives(s): 4.1

Groupwork: Group, individually assessed Weight: 65%

< 24754 Studio 2: Specialisation p > Task: The project report has an individual (35%) and a group component (30%). The group portion of the

report will demonstrate that a student can work together with others in compiling and analysing data.  The individual portion of the report will demonstrate that a student can individually complete the tasks necessary in an analytics report that would be viable in an industry setting.

The further details and information will be available on Canvas.

Assessment task 2: Reflective Essay

Objective(s): This addresses subject learning objective(s): 2, 3 and 4

This addresses program learning objectives(s):

1.1 and 3.1 Groupwork: Individual Weight: 35%

Task: This essay will demonstrate that the students understand how their project will benefit an

organization. The essay must show that the students have understood the ethical implications of their project and discuss the potential positive and negative impacts on some groups.

This task includes a milestone assessment component that evaluates English language proficiency. You may be guided to further language support after the completion of this subject if your results in  this milestone task indicate you need more help with your language skills.

The further details and information will be available on Canvas.

Minimum requirements

Students must achieve at least 50% of the subject’s total marks.

References

Camm, Jeffrey D., Cochran, James J., Fry, Micahel J., and Ohlmann, Jeffrey W., Business Analytics - 5th Edition, Cengage.

Assessment: faculty procedures and advice

Extensions and late assessment protocol

Any assessment task (excluding take-home final exams, frequent assessment tasks that must be submitted on a

regular basis prior to or during a synchronous class such as weekly homework preparation, pre-class or in-class

quizzes or single assessments that are performed and assessed during class time such as presentations) submitted after the due date and time, will be either:

. penalised by way of loss of marks where 10 per cent (10%) of the marks for the assessment task will be deducted per day for assessment tasks submitted after the due date. A day is defined as a 24-hour period or part thereof

following the published due date and time of the assignment, and

. will be rejected and not marked if the assessment is submitted more than five (5) calendar days for subjects offered in the Main Calendar (Autumn, Spring and Summer) and seven (7) calendar days for subjects offered in the UTS Online (Sessions 1 to 6), after the stated submission date, unless a formal short-term extension has been granted  by the Subject Coordinator, or

. rejected without marking (where the subject outline states that this will be the consequence of an assessment task being submitted after the due time on the due date without an approved extension)

The maximum penalty that can be applied is 50% of the assessment marks. Students cannot receive a negative score for the assessment task after a penalty is levied.

A penalty for late work will not apply in cases of approved extensions by the Subject Coordinator. Approved

extensions cannot be made without a request for extension sent directly to the coordinator (or nominated approving

tutor as designated by the subject coordinator) for short-term extensions (within the timeframe set out above) or via an application for special consideration (within the UTS time frames for submission). Any direct requests must be

received by the Subject Coordinator at least 24 hours prior to the due date and time.

Students enrolled in UTS Online courses must complete the Request for Short Extension without Academic Penalty form. to apply for a short-term extension.

A penalty may not apply after due consideration of any submission (request for extension or application for special  consideration) by the Academic Liaison Officer (ALO), on behalf of students registered with Accessibility Services         

内容概要:本文介绍了一种基于蒙特卡洛模拟和拉格朗日优化方法的电动汽车充电站有序充电调度策略,重点针对分时电价机制下的分散式优化问题。通过Matlab代码实现,构建了考虑用户充电需求、电网负荷平衡及电价波动的数学模【电动汽车充电站有序充电调度的分散式优化】基于蒙特卡诺和拉格朗日的电动汽车优化调度(分时电价调度)(Matlab代码实现)型,采用拉格朗日乘子法处理约束条件,结合蒙特卡洛方法模拟大量电动汽车的随机充电行为,实现对充电功率和时间的优化分配,旨在降低用户充电成本、平抑电网峰谷差并提升充电站运营效率。该方法体现了智能优化算法在电力系统调度中的实际应用价值。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的研究生、科研人员及从事新能源汽车、智能电网相关领域的工程技术人员。; 使用场景及目标:①研究电动汽车有序充电调度策略的设计与仿真;②学习蒙特卡洛模拟与拉格朗日优化在能源系统中的联合应用;③掌握基于分时电价的需求响应优化建模方法;④为微电网、充电站运营管理提供技术支持和决策参考。; 阅读建议:建议读者结合Matlab代码深入理解算法实现细节,重点关注目标函数构建、约束条件处理及优化求解过程,可尝试调整参数设置以观察不同场景下的调度效果,进一步拓展至多目标优化或多类型负荷协调调度的研究。
内容概要:本文围绕面向制造业的鲁棒机器学习集成计算流程展开研究,提出了一套基于Python实现的综合性计算框架,旨在应对制造过程中数据不确定性、噪声干扰面向制造业的鲁棒机器学习集成计算流程研究(Python代码实现)及模型泛化能力不足等问题。该流程集成了数据预处理、特征工程、异常检测、模型训练与优化、鲁棒性增强及结果可视化等关键环节,结合集成学习方法提升预测精度与稳定性,适用于质量控制、设备故障预警、工艺参数优化等典型制造场景。文中通过实际案例验证了所提方法在提升模型鲁棒性和预测性能方面的有效性。; 适合人群:具备Python编程基础和机器学习基础知识,从事智能制造、工业数据分析及相关领域研究的研发人员与工程技术人员,尤其适合工作1-3年希望将机器学习应用于实际制造系统的开发者。; 使用场景及目标:①在制造环境中构建抗干扰能力强、稳定性高的预测模型;②实现对生产过程中的关键指标(如产品质量、设备状态)进行精准监控与预测;③提升传统制造系统向智能化转型过程中的数据驱动决策能力。; 阅读建议:建议读者结合文中提供的Python代码实例,逐步复现整个计算流程,并针对自身业务场景进行数据适配与模型调优,重点关注鲁棒性设计与集成策略的应用,以充分发挥该框架在复杂工业环境下的优势。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值