以Titanic乘客生存预测任务为例,进一步熟悉Ray Tune调参工具。
titanic数据集的目标是根据乘客信息预测他们在Titanic号撞击冰山沉没后能否生存。
本示例的基础代码参考了下面两篇文章:
也可以看一下上一篇文章:PyTorch + Ray Tune 调参
教程中的原始代码如下:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import torch
from torch import nn
from torch.utils.data import Dataset,DataLoader,TensorDataset
from sklearn.metrics import accuracy_score
import datetime
dftrain_raw = pd.read_csv('train.csv')
dftest_raw = pd.read_csv('test.csv')
dftrain_raw.head(10)
def preprocessing(dfdata):
dfresult= pd.DataFrame()
#Pclass
dfPclass = pd.get_dummies(dfdata['Pclass'])
dfPclass.columns = ['Pclass_' +str(x) for x in dfPclass.columns ]
dfresult = pd.concat([dfresult,dfPclass],axis = 1)
#Sex
dfSex = pd.get_dummies(dfdata['Sex'])
dfresult = pd.concat([dfresult,dfSex],axis = 1)
#Age
dfresult['Age'] = dfdata['Age'].fillna(0)
dfresult['Age_null'] = pd.isna(dfdata['Age']).astype('int32')
#SibSp,Parch,Fare
dfresult['SibSp'] = dfdata['SibSp']
dfresult['Parch'] = dfdata['Parch']
dfresult['Fare'] = dfdata['Fare']
#Carbin
dfresult['Cabin_null'] = pd.isna(dfdata['Cabin']).astype('int32')
#Embarked
dfEmbarked = pd.get_dummies(dfdata['Embarked'],dummy_na=True)
dfEmbarked.columns = ['Embarked_' + str(x) for x in dfEmbarked.columns]
dfresult = pd.concat([dfresult,dfEmbarked],axis = 1)
return(dfresult)
x_train = preprocessing(dftrain_raw).values
y_train = dftrain_raw[['Survived']].values
x_test = preprocessing(dftest_raw).values
y_test = dftest_raw[['Survived']].values
print("x_train.shape =", x_train.shape )
print("x_test.shape =", x_test.shape )
print("y_train.shape =", y_train.shape )
print("y_test.shape =", y_test.shape )
dl_train = DataLoader(TensorDataset(torch.tensor(x_train).float(),torch.tensor(y_train).float()),
shuffle = True, batch_size = 8)
dl_valid = DataLoader(TensorDataset(torch.tensor(x_test).float(),torch.tensor(y_test).float()),
shuffle = False, batch_size = 8)
def create_net():
net = nn.Sequential()
net.add_module("linear1", nn.Linear(15, 20))
net.add_module("relu1", nn.ReLU())
net.add_module("linear2", nn.Linear(20, 15))
net.add_module("relu2", nn.ReLU())
net.add_module("linear3", nn.Linear(15, 1))
net.add_module("sigmoid", nn.Sigmoid())
return net
net = create_net()
print(net)
loss_func = nn.BCELoss()
optimizer = torch.optim.Adam(params=net.parameters(),lr = 0.01)
metric_func = lambda y_pred,y_true: accuracy_score(y_true.data.numpy(),y_pred.data.numpy()>0.5)
metric_name = "accuracy"
epochs = 10
log_step_freq = 30
dfhistory = pd.DataFrame(columns = ["epoch","loss",metric_name,"val_loss","val_"+metric_name])
print("Start

该示例介绍了如何利用PyTorch和RayTune进行超参数调优,以提高Titanic数据集上的乘客生存预测模型的性能。通过数据预处理、模型创建、训练和验证流程的封装,以及定义模型参数搜索空间,RayTune的ASHAScheduler被用来自动调整模型的结构和学习率,以找到最佳配置。
最低0.47元/天 解锁文章
1万+





