由于Python设计的限制(我说的是咱们常用的CPython)。最多只能用满1个CPU核心。
Python提供了非常好用的多进程包multiprocessing,你只需要定义一个函数,Python会替你完成其他所有事情。借助这个包,可以轻松完成从单进程到并发执行的转换。
1、新建单一进程
import multiprocessing
import time
def func(msg):
for i in xrange(3):
print msg
time.sleep(1)
if __name__ == "__main__":
p = multiprocessing.Process(target=func, args=("hello", ))
p.start()
p.join()
print "Sub-process done."
2、使用进程池
是的,你没有看错,不是线程池。它可以让你跑满多核CPU,而且使用方法非常简单。
注意要用apply_async,如果落下async,就变成阻塞版本了。
processes=4是最多并发进程数量。import multiprocessing
import time
def func(msg):
for i in xrange(3):
print msg
time.sleep(1)
if __name__ == "__main__":
pool = multiprocessing.Pool(processes=4)
for i in xrange(10):
msg = "hello %d" %(i)
pool.apply_async(func, (msg, ))
pool.close()
pool.join()
print "Sub-process(es) done."
3、使用Pool,并需要关注结果
更多的时候,我们不仅需要多进程执行,还需要关注每个进程的执行结果,如下:
import multiprocessing
import time
def func(msg):
for i in xrange(3):
print msg
time.sleep(1)
return "done " + msg
if __name__ == "__main__":
pool = multiprocessing.Pool(processes=4)
result = []
for i in xrange(10):
msg = "hello %d" %(i)
result.append(pool.apply_async(func, (msg, )))
pool.close()
pool.join()
for res in result:
print res.get()
print "Sub-process(es) done."
Another example--
#! /usr/bin/env python
import random
import multiprocessing
import time
import Queue
class Worker(multiprocessing.Process):
def __init__(self, work_queue, result_queue):
# base class initialization
multiprocessing.Process.__init__(self)
# job management stuff
self.work_queue = work_queue
self.result_queue = result_queue
self.kill_received = False
def run(self):
while not self.kill_received:
# get a task
#job = self.work_queue.get_nowait()
try:
job = self.work_queue.get_nowait()
except Queue.Empty:
break
# the actual processing
print("Starting " + str(job) + " ...")
delay = random.randrange(1,3)
time.sleep(delay)
# store the result
self.result_queue.put(delay)
if __name__ == "__main__":
num_jobs = 20
num_processes=8
# run
# load up work queue
work_queue = multiprocessing.Queue()
for job in range(num_jobs):
work_queue.put(job)
# create a queue to pass to workers to store the results
result_queue = multiprocessing.Queue()
# spawn workers
for i in range(num_processes):
worker = Worker(work_queue, result_queue)
worker.start()
# collect the results off the queue
results = []
for i in range(num_jobs):
print(result_queue.get())
本文详细介绍了Python中多进程技术的实现方法,包括如何使用multiprocessing库创建单一进程、使用进程池并关注结果,以及如何在多核CPU上高效运行多个进程。通过实例演示了如何将单进程应用转换为并发执行的多进程应用。
3020

被折叠的 条评论
为什么被折叠?



