Introduction to VMware vSphere Virtual SAN

Many of you have seen the announcements by now and I am guessing that you are as excited as I am about the announcement of the public beta of Virtual SAN with vSphere 5.5. What is Virtual SAN, formerly known as “VSAN” or “vCloud Distributed Storage” all about?

Virtual SAN (VSAN from now on in this article) is a software based distributed storage solution which is built directly in the hypervisor. No this is not a virtual appliance like many of the other solutions out there, this sits indeed right inside your ESXi layer. VSAN is about simplicity, and when I say simple I do mean simple. Want to play around with VSAN? Create a VMkernel NIC for VSAN and enable it on a cluster level. Yes that is it!

vSphere Virtual SAN

Before we will get a bit more in to the weeds, what are the benefits of a solution like VSAN? What are the key selling points?

  • Software defined – Use industry standard hardware, as long as it is on the HCL you are good to go!
  • Flexible – Scale as needed and when needed. Just add more disks or add more hosts, yes both scale-up and scale-out are possible.
  • Simple – Ridiculously easy to manage! Ever tried implementing or managing some of the storage solutions out there? If you did, you know what I am getting at!
  • Automated – Per virtual machine policy based management. Yes, virtual machine level granularity. No more policies defined on a per LUN/Datastore level, but at the level where you want it to be!
  • Converged – It allows you to create dense / building block style solutions!

Okay that sounds great right, but where does that fit in? What are the use-cases for VSAN when it is released?

  • Virtual desktops
    • Scale out model, using predictive (performance etc) repeatable infrastructure blocks lowers costs and simplifies operations
  • Test & Dev
    • Avoids acquisition of expensive storage (lowers TCO), fast time to provision
  • Big Data
    • Scale out model with high bandwidth capabilities
  • Disaster recovery target
    • Cheap DR solution, enabled through a feature like vSphere Replication that allows you to replicate to any storage platform

So lets get a bit more technical, just a bit as this is an introduction right…

When VSAN is enabled a single shared datastore is presented to all hosts which are part of the VSAN enabled cluster. Typically all hosts will contribute performance (SSD) and capacity (magnetic disks) to this shared datastore. This means that when your cluster grows, your datastore will grow with it. (Not a requirement, there can be hosts in the cluster which just consume the datastore!) Note that there are some requirements for hosts which want to contribute storage. Each host will require at least one SSD and one magnetic disk. Also good to know is that with this beta release the limit on a VSAN enabled cluster is 8 hosts. (Total cluster size 8 hosts, including hosts not contributing storage to your VSAN datastore.)

As expected, VSAN heavily relies on SSD for performance. Every write I/O will go to SSD first, and eventually they will go to magnetic disks (SATA). As mentioned, you can set policies on a per virtual machine level. This will also dictate for instance what percentage of your read I/O you can expect to come from SSD. On top of that you can use these policies to define availability of your virtual machines. Yes you read that right, you can have different availability policies for virtual machines sitting on the same datastore. For resiliency “objects” will be replicated across multiple hosts, how many hosts/disks will thus depend on the profile.

VSAN does not require a local RAID set, just a bunch of local disks. Now, whether you defined a 1 host failure to tolerate ,or for instance a 3 host failure to tolerate, VSAN will ensure enough replicas of your objects are created. Is this awesome or what? So lets take a simple example to illustrate that. We have configured a 1 host failure and create a new virtual disk. This means that VSAN will create 2 identical objects and a witness. The witness is there just in case something happens to your cluster and to help you decide who will take control in case of a failure, the witness is not a copy of your object let that be clear! Note, that the amount of hosts in your cluster could potentially limit the amount of “host failures to tolerate”. In other words, in a 3 node cluster you can not create an object that is configured with 2 “host failures to tolerate”. Difficult to visualize? Well this is what it would look like on a high level for a virtual disk which tolerates 1 host failure:

With all this replication going on, are there requirements for networking? At a minimum VSAN will require a dedicated 1Gbps NIC port. Of course it is needless to say that 10Gbps would be preferred with solutions like these, and you should always have an additional NIC port available for resiliency purposes. There is no requirement from a virtual switch perspective, you can use either the Distributed Switch or the plain old vSwitch, both will work fine.

To conclude, vSphere Virtual SAN aka VSAN is a brand new hypervisor based distributed platform that enables convergence of compute and storage resources. It provides virtual machine level granularity through policy based management. It allows you to control availability and performance in a way I have never seen it before, simple and efficient. I am hoping that everyone will be pounding away on the public beta, sign up today: http://www.vmware.com/vsan-beta-register!

Be Sociable, Share!
内容概要:本文详细介绍了如何利用Simulink进行自动代码生成,在STM32平台上实现带57次谐波抑制功能的霍尔场定向控制(FOC)。首先,文章讲解了所需的软件环境准备,包括MATLAB/Simulink及其硬件支持包的安装。接着,阐述了构建永磁同步电机(PMSM)霍尔FOC控制模型的具体步骤,涵盖电机模型、坐标变换模块(如Clark和Park变换)、PI调节器、SVPWM模块以及用于抑制特定谐波的陷波器的设计。随后,描述了硬件目标配置、代码生成过程中的注意事项,以及生成后的C代码结构。此外,还讨论了霍尔传感器的位置估算、谐波补偿器的实现细节、ADC配置技巧、PWM死区时间和换相逻辑的优化。最后,分享了一些实用的工程集成经验,并推荐了几篇有助于深入了解相关技术和优化控制效果的研究论文。 适合人群:从事电机控制系统开发的技术人员,尤其是那些希望掌握基于Simulink的自动代码生成技术,以提高开发效率和控制精度的专业人士。 使用场景及目标:适用于需要精确控制永磁同步电机的应用场合,特别是在面对高次谐波干扰导致的电流波形失真问题时。通过采用文中提供的解决方案,可以显著改善系统的稳定性和性能,降低噪声水平,提升用户体验。 其他说明:文中不仅提供了详细的理论解释和技术指导,还包括了许多实践经验教训,如霍尔传感器处理、谐波抑制策略的选择、代码生成配置等方面的实际案例。这对于初学者来说是非常宝贵的参考资料。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值