caffe绘制训练过程中的accuracy、loss曲线 - 竹馨shine的专栏 - 博客频道 - youkuaiyun.com



关闭
var username = "u013989576"; var _blogger = username; var blog_address = "http://blog.youkuaiyun.com/u013989576"; var static_host = "http://static.blog.youkuaiyun.com"; var currentUserName = "";
window.quickReplyflag = true; var isBole = false; var fasrc="http://my.youkuaiyun.com/my/favorite/miniadd?t=caffe%e7%bb%98%e5%88%b6%e8%ae%ad%e7%bb%83%e8%bf%87%e7%a8%8b%e4%b8%ad%e7%9a%84accuracy%e3%80%81loss%e6%9b%b2%e7%ba%bf&u=http://blog.youkuaiyun.com/u013989576/article/details/71302244"
<div id="body">
<div id="main">
<div class="main">
<div class="ad_class">
<div class="article_manage clearfix">
<div class="article_r">
<span class="link_postdate">2017-05-06 22:12</span>
<span class="link_view" title="阅读次数">198人阅读</span>
<span class="link_comments" title="评论次数"> <a href="#comments" onclick="_gaq.push(['_trackEvent','function', 'onclick', 'blog_articles_pinglun'])">评论</a>(0)</span>
<span class="link_collect tracking-ad" data-mod="popu_171"> <a href="javascript:void(0);" onclick="javascript:collectArticle('caffe%e7%bb%98%e5%88%b6%e8%ae%ad%e7%bb%83%e8%bf%87%e7%a8%8b%e4%b8%ad%e7%9a%84accuracy%e3%80%81loss%e6%9b%b2%e7%ba%bf','71302244');return false;" title="收藏">收藏</a></span>
<span class="link_report"> <a href="#report" onclick="javascript:report(71302244,2);return false;" title="举报">举报</a></span>
</div>
</div> <style type="text/css">
.embody{
padding:10px 10px 10px;
margin:0 -20px;
border-bottom:solid 1px #ededed;
}
.embody_b{
margin:0 ;
padding:10px 0;
}
.embody .embody_t,.embody .embody_c{
display: inline-block;
margin-right:10px;
}
.embody_t{
font-size: 12px;
color:#999;
}
.embody_c{
font-size: 12px;
}
.embody_c img,.embody_c em{
display: inline-block;
vertical-align: middle;
}
.embody_c img{
width:30px;
height:30px;
}
.embody_c em{
margin: 0 20px 0 10px;
color:#333;
font-style: normal;
}
</style>
<script type="text/javascript">
$(function () {
try
{
var lib = eval("("+$("#lib").attr("value")+")");
var html = "";
if (lib.err == 0) {
$.each(lib.data, function (i) {
var obj = lib.data[i];
//html += '<img src="' + obj.logo + '"/>' + obj.name + " ";
html += ' <a href="' + obj.url + '" target="_blank">';
html += ' <img src="' + obj.logo + '">';
html += ' <em><b>' + obj.name + '</b></em>';
html += ' </a>';
});
if (html != "") {
setTimeout(function () {
$("#lib").html(html);
$("#embody").show();
}, 100);
}
}
} catch (err)
{ }
});
</script>
<div class="category clearfix">
<div class="category_l">
<img src="http://static.blog.youkuaiyun.com/images/category_icon.jpg">
<span>分类:</span>
</div>
<div class="category_r">
<label onclick="GetCategoryArticles('6746192','u013989576','top','71302244');">
<span onclick="_gaq.push(['_trackEvent','function', 'onclick', 'blog_articles_fenlei']);">机器学习与深度学习<em>(23)</em></span>
<img class="arrow-down" src="http://static.blog.youkuaiyun.com/images/arrow_triangle _down.jpg" style="display:inline;">
<img class="arrow-up" src="http://static.blog.youkuaiyun.com/images/arrow_triangle_up.jpg" style="display:none;">
<div class="subItem">
<div class="subItem_t"><a href="http://blog.youkuaiyun.com/u013989576/article/category/6746192" target="_blank">作者同类文章</a><i class="J_close">X</i></div>
<ul class="subItem_l" id="top_6746192">
</ul>
</div>
</label>
</div>
</div>
<div class="bog_copyright">
<p class="copyright_p" >版权声明:本文为博主原创文章,未经博主允许不得转载。</p>
</div>
训练模型并保存日志文件
首先建立一个训练数据的脚本文件train.sh,其内容如下,其中,2>&1 | tee examples/mnist/mnist_train_log.log 是log日志文件的保存目录。
#!/usr/bin/env sh
set -e
TOOLS=./build/tools
$TOOLS/caffe train --solver=examples/mnist/lenet_solver.prototxt 2>&1 | tee examples/mnist/mnist_train_log.log
训练完成后,会在examples/mnist文件夹下生成mnist_train_log.log日志
绘制曲线
首先将文件夹caffe/tools/extra下的parse_log.sh 、extract_seconds.py、plot_training_log.py.example复制到上一步log日志文件的保存目录下。
然后,将plot_training_log.py.example改为plot_training_log.py,并执行以下命令就可以绘制曲线:
python plot_training_log.py 6 train_loss.png mnist_train_log.log
caffe支持多种曲线绘制,指定不同的类型参数即可,具体参数如下:
Notes:
1. Supporting multiple logs.
2. Log file name must end with the lower-cased ".log".
Supported chart types:
0: Test accuracy vs. Iters
1: Test accuracy vs. Seconds
2: Test loss vs. Iters
3: Test loss vs. Seconds
4: Train learning rate vs. Iters
5: Train learning rate vs. Seconds
6: Train loss vs. Iters
7: Train loss vs. Seconds
遇到的问题:
问题1:
刚开始的时候发现类型参数为0-3的时候,可以正常绘制曲线,但是类型参数为4-7的时候,出现下面的错误:
解决方法:
打开生成的mnist_train_log.log.train文件后,发现确实是提取TrainingLoss数据有问题,如图1;后来按博客点击打开链接中的方法将parse_log.sh进行修改。对于parse-log.sh生成的文件mnist_train_log.log.train,caffe自带的parse-log.sh提取到的是第9列(第9个域),也就是带S/10的那些数,我将它改成第13个域,也就是loss及=符号后的数,真正的loss在第13列,如图2、
3。
图1
图2
图3
问题2:
解决完上述问题后,
类型参数为4-7的时候,还是不能绘制曲线,出现如下问题:IndexError: list index out of range
解决方法:
群里大神帮忙找到问题了,原来是
m
nist_train_log.log.train中最后一行存在数据缺失问题,无奈,日志文件真的没有数据了,只能伪造一组数据了,如下图,红色圈中的就是我自己加的。但是,感觉这样做不好,关于这个问题,大家有遇到过没,怎么解决的,可以交流一下
。
修改前的:
修改后的: