生产者和消费者模型

本文详细阐述了如何使用多线程同步技术(如信号量)实现数据下载线程与存储线程之间的高效协作。通过定义数据缓冲区队列,以及使用Semaphore管理数据块的空闲与使用状态,确保了系统资源的有效利用,提高了数据处理的并发性和效率。
基本的思路:
  这个问题相当于是生产者和消费者模型的问题
  首先定义两个线程,一个是下载线程,一个是存储线程,下载线程将数据从网络上下载到相应的数据的缓冲区中(BLOCK组成的队列)。存储的线程从数据缓冲区中读取相应的数据,并将其写到相应的磁盘上去。
  多线程同步的方式有:CriticalSection、Mutex和Semaphore(信号量)。因为CriticalSection和Mutex,将不会使下载线程和存储线程同时进行工作,影响系统的效率,所以这里采用semaphore。
信号量的含义:
信号量的特性如下:信号量是一个非负整数(表示可以利用的资源数,这里是指的是可用的数据缓冲区中BLOCK的数量),所有通过它的线程(下载线程和存储线程)都会将该整数减一(通过它当然是为了使用资源),当该整数值为零时,所有试图通过它的线程都将处于等待状态。在信号量上我们定义两种操作:Unsignal 和 Signal(释放)。 当一个线程调用Unsignal操作时,它要么通过然后将信号量减一(还有相应的资源),要么一直等下去(相应的资源已经没有),直到信号量大于一或超时。Signal实际上是在信号量上执行加操作,相当于提醒别的新的线程已经可以使用被释放的资源。       


核心程序
#define BUFFER_COUNT 100  //定义数据队列中数据块的数目。
//每一个数据块将是下载线程和存储线程操作的基本的单元
BLOCK g_buffer[BUFFER_COUNT];//数据缓冲区队列
 
Thread g_ThreadA(ProcA);//下载线程
Thread g_ThreadB(ProcB);//存储线程
//信号量,表示现在在数据队列中已经存放满数据的数据块的数量
Semaphore g_seFull(0,BUFFER_COUNT);
//信号量,表示现在在数据队列中空数据块的数量
Semaphore g_seEmpty(BUFFER_COUNT,BUFFER_COUNT);
bool g_downloadComplete = false;
int in_index = 0;//表示当前下载线程正在处理的数据块的编号

int out_index = 0;//表示当前存储线程正在处理的数据块的编号



void main()
{
     g_ThreadA.start();//启动下载线程
     g_ThreadB.start();//启动存储线程
     Wait();
}
 
//下载线程的工作函数
void ProcA()
{
     while(true)
     {
           //申请一个空的数据块的资源
          g_seEmpty.Unsignal();  
          //申请到空的数据块,向in_index指向的BLOCK下载数据
          g_downloadComplete = GetBlockFromNet(g_buffer + in_index);
          //in_index更新
          in_index = (in_index + 1) % BUFFER_CONUT;  
          g_seFull.Signal();//报告又有一个新的数据块已经下载完毕,可以指向写入操作...
         if(g_downloadComplete)
                break;
     }
}
 
//存储线程的工作函数
void ProcB()
{
     while(true)
     {
           //申请一个满的数据块的资源
          g_seFull.Unsignal();  
          //申请到满的数据块,从out_index指向的BLOCK获取数据,写入Disk。
          WriteBlockToDisk(g_buffer + out_index);
          //out_index更新
          out_index = (out_index + 1) % BUFFER_CONUT;  
          g_seEmpty.Signal();//报告又有一个新的数据块已经写入完毕,可以下载覆盖其数据...
         if(g_downloadComplete && out_index == in_index)
               break;
     }
}
内容概要:本文详细介绍了一种基于Simulink的表贴式永磁同步电机(SPMSM)有限控制集模型预测电流控制(FCS-MPCC)仿真系统。通过构建PMSM数学模型、坐标变换、MPC控制器、SVPWM调制等模块,实现了对电机定子电流的高精度跟踪控制,具备快速动态响应低稳态误差的特点。文中提供了完整的仿真建模步骤、关键参数设置、核心MATLAB函数代码及仿真结果分析,涵盖转速、电流、转矩三相电流波形,验证了MPC控制策略在动态性能、稳态精度抗负载扰动方面的优越性,并提出了参数自整定、加权代价函数、模型预测转矩控制弱磁扩速等优化方向。; 适合人群:自动化、电气工程及其相关专业本科生、研究生,以及从事电机控制算法研究与仿真的工程技术人员;具备一定的电机原理、自动控制理论Simulink仿真基础者更佳; 使用场景及目标:①用于永磁同步电机模型预测控制的教学演示、课程设计或毕业设计项目;②作为电机先进控制算法(如MPC、MPTC)的仿真验证平台;③支撑科研中对控制性能优化(如动态响应、抗干扰能力)的研究需求; 阅读建议:建议读者结合Simulink环境动手搭建模型,深入理解各模块间的信号流向与控制逻辑,重点掌握预测模型构建、代价函数设计与开关状态选择机制,并可通过修改电机参数或控制策略进行拓展实验,以增强实践与创新能力。
根据原作 https://pan.quark.cn/s/23d6270309e5 的源码改编 湖北省黄石市2021年中考数学试卷所包含的知识点广泛涉及了中学数学的基础领域,涵盖了实数、科学记数法、分式方程、几何体的三视图、立体几何、概率统计以及代数方程等多个方面。 接下来将对每道试题所关联的知识点进行深入剖析:1. 实数与倒数的定义:该题目旨在检验学生对倒数概念的掌握程度,即一个数a的倒数表达为1/a,因此-7的倒数可表示为-1/7。 2. 科学记数法的运用:科学记数法是一种表示极大或极小数字的方法,其形式为a×10^n,其中1≤|a|<10,n为整数。 此题要求学生运用科学记数法表示一个天文单位的距离,将1.4960亿千米转换为1.4960×10^8千米。 3. 分式方程的求解方法:考察学生解决包含分母的方程的能力,题目要求找出满足方程3/(2x-1)=1的x值,需通过消除分母的方式转化为整式方程进行解答。 4. 三视图的辨认:该题目测试学生对于几何体三视图(主视图、左视图、俯视图)的认识,需要识别出具有两个相同视图而另一个不同的几何体。 5. 立体几何与表面积的计算:题目要求学生计算由直角三角形旋转形成的圆锥的表面积,要求学生对圆锥的底面积侧面积公式有所了解并加以运用。 6. 统计学的基础概念:题目涉及众数、平均数、极差中位数的定义,要求学生根据提供的数据信息选择恰当的统计量。 7. 方程的整数解求解:考察学生在实际问题中进行数学建模的能力,通过建立方程来计算在特定条件下帐篷的搭建方案数量。 8. 三角学的实际应用:题目通过在直角三角形中运用三角函数来求解特定线段的长度。 利用正弦定理求解AD的长度是解答该问题的关键。 9. 几何变换的应用:题目要求学生运用三角板的旋转来求解特定点的...
Python基于改进粒子群IPSO与LSTM的短期电力负荷预测研究内容概要:本文围绕“Python基于改进粒子群IPSO与LSTM的短期电力负荷预测研究”展开,提出了一种结合改进粒子群优化算法(IPSO)与长短期记忆网络(LSTM)的混合预测模型。通过IPSO算法优化LSTM网络的关键参数(如学习率、隐层节点数等),有效提升了模型在短期电力负荷预测中的精度与收敛速度。文中详细阐述了IPSO算法的改进策略(如引入自适应惯性权重、变异机制等),增强了全局搜索能力与避免早熟收敛,并利用实际电力负荷数据进行实验验证,结果表明该IPSO-LSTM模型相较于传统LSTM、PSO-LSTM等方法在预测准确性(如MAE、RMSE指标)方面表现更优。研究为电力系统调度、能源管理提供了高精度的负荷预测技术支持。; 适合人群:具备一定Python编程基础、熟悉基本机器学习算法的高校研究生、科研人员及电力系统相关领域的技术人员,尤其适合从事负荷预测、智能优化算法应用研究的专业人士。; 使用场景及目标:①应用于短期电力负荷预测,提升电网调度的精确性与稳定性;②为优化算法(如粒子群算法)与深度学习模型(如LSTM)的融合应用提供实践案例;③可用于学术研究、毕业论文复现或电力企业智能化改造的技术参考。; 阅读建议:建议读者结合文中提到的IPSO与LSTM原理进行理论学习,重点关注参数优化机制的设计思路,并动手复现实验部分,通过对比不同模型的预测结果加深理解。同时可拓展尝试将该方法应用于其他时序预测场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值