poj-2251-Dungeon Master(bfs)

本文介绍了一种解决三维迷宫最短路径问题的方法,利用广度优先搜索算法找到从起点到终点的最快路径。
Dungeon Master
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 23841 Accepted: 9270

Description

You are trapped in a 3D dungeon and need to find the quickest way out! The dungeon is composed of unit cubes which may or may not be filled with rock. It takes one minute to move one unit north, south, east, west, up or down. You cannot move diagonally and the maze is surrounded by solid rock on all sides. 

Is an escape possible? If yes, how long will it take? 

Input

The input consists of a number of dungeons. Each dungeon description starts with a line containing three integers L, R and C (all limited to 30 in size). 
L is the number of levels making up the dungeon. 
R and C are the number of rows and columns making up the plan of each level. 
Then there will follow L blocks of R lines each containing C characters. Each character describes one cell of the dungeon. A cell full of rock is indicated by a '#' and empty cells are represented by a '.'. Your starting position is indicated by 'S' and the exit by the letter 'E'. There's a single blank line after each level. Input is terminated by three zeroes for L, R and C. 

Output

Each maze generates one line of output. If it is possible to reach the exit, print a line of the form 
Escaped in x minute(s). 

where x is replaced by the shortest time it takes to escape. 
If it is not possible to escape, print the line 
Trapped! 

Sample Input

3 4 5
S....
.###.
.##..
###.#

#####
#####
##.##
##...

#####
#####
#.###
####E

1 3 3
S##
#E#
###

0 0 0

Sample Output

Escaped in 11 minute(s).
Trapped!
题意:给出三维空间的地牢,要求求出由字符'S'到字符'E'的最短路径移动方向可以是上,下,左,右,前,后,六个方向每移动一次就耗费一分钟,要求输出最快的走出时间。(上下楼梯时,xy坐标不变)
思路:就是把方向增加到6个,其他没什么区别,水过。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <string>
#include <queue>
#define INF 0x3f3f3f3f
#define CSH(a, b) memset(a, (b), sizeof(a))
using namespace std;
char s[31][31][31];
int dir[6][3]={-1,0,0, 1,0,0, 0,-1,0, 0,1,0, 0,0,1, 0,0,-1};
int did[2]={-1,1};
int t,m,n;
int flag;
struct node
{
    int x,y,z,ti;
}fr;
void intt()
{
    for(int i=0;i<t;i++)
    {
        for(int j=0;j<n;j++)
        {
            getchar ();
            for(int k=0;k<m;k++)
            {
                scanf("%c",&s[i][j][k]);
                if(s[i][j][k]=='S')
                {
                    fr.x=j;
                    fr.y=k;
                    fr.z=i;
                    fr.ti=0;
                    s[i][j][k]='#';
                }
                
            }
        }
        getchar();
    }
    
}
void bfs()
{
    queue<node> q;
    while(!q.empty())
    {
        q.pop();
    }
    q.push(fr);
    while(!q.empty())
    {
        node ne;
        ne=q.front();
        q.pop();
        for(int i=0;i<6;i++)
        {
            node no;
            no.x=ne.x+dir[i][0];
            no.y=ne.y+dir[i][1];
            no.z=ne.z+dir[i][2];
            no.ti=ne.ti;
            if(no.x>=0&&no.x<n&&no.y<m&&no.y>=0&&no.z<t&&no.z>=0&&s[no.z][no.x][no.y]!='#')//判断边界
            {
                no.ti++;
                if(s[no.z][no.x][no.y]=='E')
                {
                    flag=no.ti;
                    break;
                }
                s[no.z][no.x][no.y]='#';
                //操作..
                q.push(no);
            }
            if(flag)
                break;
        }
    }
    
}
int main()
{
    while(~scanf("%d%d%d",&t,&n,&m)&&n+m+t)
    {
        flag=0;
        intt();
        bfs();
        if(flag)
            printf("Escaped in %d minute(s).\n",flag);
        else
            printf("Trapped!\n");
    }
}


基于粒子群优化算法的p-Hub选址优化(Matlab代码实现)内容概要:本文介绍了基于粒子群优化算法(PSO)的p-Hub选址优化问题的研究与实现,重点利用Matlab进行算法编程和仿真。p-Hub选址是物流与交通网络中的关键问题,旨在通过确定最优的枢纽节点位置和非枢纽节点的分配方式,最小化网络总成本。文章详细阐述了粒子群算法的基本原理及其在解决组合优化问题中的适应性改进,结合p-Hub中转网络的特点构建数学模型,并通过Matlab代码实现算法流程,包括初始化、适应度计算、粒子更新与收敛判断等环节。同时可能涉及对算法参数设置、收敛性能及不同规模案例的仿真结果分析,以验证方法的有效性和鲁棒性。; 适合人群:具备一定Matlab编程基础和优化算法理论知识的高校研究生、科研人员及从事物流网络规划、交通系统设计等相关领域的工程技术人员。; 使用场景及目标:①解决物流、航空、通信等网络中的枢纽选址与路径优化问题;②学习并掌握粒子群算法在复杂组合优化问题中的建模与实现方法;③为相关科研项目或实际工程应用提供算法支持与代码参考。; 阅读建议:建议读者结合Matlab代码逐段理解算法实现逻辑,重点关注目标函数建模、粒子编码方式及约束处理策略,并尝试调整参数或拓展模型以加深对算法性能的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值