Python 数据处理与分析:NumPy、Pandas 及 Google Colab 应用
1. 用逐次逼近法计算均方误差(MSE)
在二维平面中,为了确定一组点的最佳拟合线方程,我们可以使用逐次逼近法计算“delta”近似值。下面的代码示例通过添加一个表示轮数(epochs)的外循环,对之前的代码进行了扩展。
import numpy as np
import matplotlib.pyplot as plt
# %matplotlib inline
X = [0,0.12,0.25,0.27,0.38,0.42,0.44,0.55,0.92,1.0]
Y = [0,0.15,0.54,0.51, 0.34,0.1,0.19,0.53,1.0,0.58]
#uncomment to see a plot of X versus Y values
#plt.plot(X,Y)
#plt.show()
costs = []
#Step 1: Parameter initialization
W = 0.45
b = 0.75
epochs = 100
lr = 0.001
for j in range(1, epochs):
for i in range(1, 100):
#Step 2: Calculate Loss
Y_pred = np.multiply(W, X) + b
Loss_error = 0.5 * (Y_pred - Y)**2
loss = np.sum(Loss_error)/10
#Step 3: Calculate dW and db
db = n
超级会员免费看
订阅专栏 解锁全文
3617

被折叠的 条评论
为什么被折叠?



