基于开源模型对文本和音频进行情感分析

应用场景

  1. 从商品详情页爬取商品评论,对其做舆情分析;
  2. 电话客服,对音频进行分析,做舆情分析;
  3. 通过对商品的评论分析,作为对供应商打分/商品个性化排序等依据;

模型选用

  • 文本,选用了通义实验室fine-tune的structBERT 模型,基于大众点评的评论数据进行训练,使用预训练模型进行推理,CPU 能跑,支持模型微调,基本上不用微调了,因为他是基于电商领域的数据集进行训练的,基本够用,training dataset 使用了大众点评等平台数据,可本地部署;

参考论文:

title: Incorporating language structures into pre-training for deep language understanding
author:Wang, Wei and Bi, Bin and Yan, Ming and Wu, Chen and Bao, Zuyi and Xia, Jiangnan and Peng, Liwei and Si, Luo
journal:arXiv preprint arXiv:1908.04577,
year:2019

版本依赖:

modelscope-lib 最新版本

推理代码:

semantic_cls = pipeline(Tasks.text_classification, 'damo/nlp_structbert_sentiment-classification_chinese-base')

comment0 = '非常厚实的一包大米,来自遥远的东北,盘锦大米,应该
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值