Spark Streaming实现实时WordCount,DStream的使用,updateStateByKey(func)实现累计计算单词出现频率

本文介绍如何使用 Spark Streaming 实现实时 WordCount 功能,包括搭建环境、编写程序及运行步骤,并展示了如何利用 updateStateByKey 实现计数累加。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、 实战

1.用Spark Streaming实现实时WordCount
架构图:
这里写图片描述
说明:在hadoop1:9999下的nc上发送消息,消费端接收消息,然后并进行单词统计计算。

* 2.安装并启动生成者 *
首先在一台Linux(ip:192.168.10.101)上用YUM安装nc工具
yum install -y nc

启动一个服务端并监听9999端口
nc -lk 9999

2.编写Spark Streaming程序
编写Pom文件

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>cn.toto.spark</groupId>
    <artifactId>bigdata</artifactId>
    <version>1.0-SNAPSHOT</version>

    <properties>
        <maven.compiler.source>1.7</maven.compiler.source>
        <maven.compiler.target>1.7</maven.compiler.target>
        <encoding>UTF-8</encoding>
        <scala.version>2.10.6</scala.version>
        <spark.version>1.6.2</spark.version>
        <hadoop.version>2.6.4</hadoop.version>
    </properties>

    <dependencies>
        <dependency>
            <groupId>org.scala-lang</groupId>
            <artifactId>scala-library</artifactId>
            <version>${scala.version}</version>
        </dependency>

        <dependency>
            <groupId>org.scala-lang</groupId>
            <artifactId>scala-compiler</artifactId>
            <version>${scala.version}</version>
        </dependency>

        <dependency>
            <groupId>org.scala-lang</groupId>
            <artifactId>scala-reflect</artifactId>
            <version>${scala.version}</version>
        </dependency>

        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.10</artifactId>
            <version>${spark.version}</version>
        </dependency>

        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>${hadoop.version}</version>
        </dependency>

        <dependency>
            <groupId>mysql</groupId>
            <artifactId>mysql-connector-java</artifactId>
            <version>5.1.38</version>
        </dependency>

        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-sql_2.10</artifactId>
            <version>${spark.version}</version>
        </dependency>

        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-mllib_2.10</artifactId>
            <version>${spark.version}</version>
        </dependency>

        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-hive_2.10</artifactId>
            <version>${spark.version}</version>
        </dependency>

        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-streaming_2.10</artifactId>
            <version>${spark.version}</version>
        </dependency>

        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-streaming-flume_2.10</artifactId>
            <version>${spark.version}</version>
        </dependency>

        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-streaming-kafka_2.10</artifactId>
            <version>${spark.version}</version>
        </dependency>
    </dependencies>

    <build>
        <sourceDirectory>src/main/scala</sourceDirectory>
        <testSourceDirectory>src/test/scala</testSourceDirectory>
        <plugins>
            <plugin>
                <groupId>net.alchim31.maven</groupId>
                <artifactId>scala-maven-plugin</artifactId>
                <version>3.2.2</version>
                <executions>
                    <execution>
                        <goals>
                            <goal>compile</goal>
                            <goal>testCompile</goal>
                        </goals>
                        <configuration>
                            <args>
                                <arg>-make:transitive</arg>
                                <arg>-dependencyfile</arg>
                                <arg>${project.build.directory}/.scala_dependencies</arg>
                            </args>
                        </configuration>
                    </execution>
                </executions>
            </plugin>

            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-surefire-plugin</artifactId>
                <version>2.18.1</version>
                <configuration>
                    <useFile>false</useFile>
                    <disableXmlReport>true</disableXmlReport>
                    <includes>
                        <include>**/*Test.*</include>
                        <include>**/*Suite.*</include>
                    </includes>
                </configuration>
            </plugin>

            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-shade-plugin</artifactId>
                <version>2.4.3</version>
                <executions>
                    <execution>
                        <phase>package</phase>
                        <goals>
                            <goal>shade</goal>
                        </goals>
                        <configuration>
                            <filters>
                                <filter>
                                    <artifact>*:*</artifact>
                                    <excludes>
                                        <exclude>META-INF/*.SF</exclude>
                                        <exclude>META-INF/*.DSA</exclude>
                                        <exclude>META-INF/*.RSA</exclude>
                                    </excludes>
                                </filter>
                            </filters>
                            <transformers>
                                <transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
                                    <mainClass>cn.toto.spark.JdbcRDDDemo</mainClass>
                                </transformer>
                            </transformers>
                        </configuration>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>

</project>
package cn.toto.spark.streams

import org.apache.log4j.{Level, Logger}
import org.apache.spark.Logging

import org.apache.log4j.{Logger, Level}
import org.apache.spark.Logging

object LoggerLevels extends Logging {

  def setStreamingLogLevels() {
    val log4jInitialized = Logger.getRootLogger.getAllAppenders.hasMoreElements
    if (!log4jInitialized) {
      logInfo("Setting log level to [WARN] for streaming example." +
        " To override add a custom log4j.properties to the classpath.")
      Logger.getRootLogger.setLevel(Level.WARN)
    }
  }
}

package cn.toto.spark

import cn.toto.spark.streams.LoggerLevels
import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}

/**
  * Created by toto on 2017/7/13.
  */
object NetworkWordCount {
  def main(args: Array[String]) {
    //设置日志级别
    LoggerLevels.setStreamingLogLevels()
    //创建SparkConf并设置为本地模式运行
    //注意local[2]代表开两个线程
    val conf = new SparkConf().setMaster("local[2]").setAppName("NetworkWordCount")
    //设置DStream批次时间间隔为5秒
    val ssc = new StreamingContext(conf, Seconds(5))
    //通过网络读取数据
    val lines = ssc.socketTextStream("hadoop1", 9999)
    //将读到的数据用空格切成单词
    val words = lines.flatMap(_.split(" "))
    //将单词和1组成一个pair
    val pairs = words.map(word => (word, 1))
    //按单词进行分组求相同单词出现的次数
    val wordCounts = pairs.reduceByKey(_ + _)
    //打印结果到控制台
    wordCounts.print()
    //开始计算
    ssc.start()
    //等待停止
    ssc.awaitTermination()
  }
}

3.启动Spark Streaming程序:由于使用的是本地模式”local[2]”所以可以直接在本地运行该程序
注意: 要指定并行度,如在本地运行设置setMaster(“local[2]”),相当于启动两个线程,一个给receiver,一个给computer。如果是在集群中运行,必须要求集群中可用core数大于1
这里写图片描述

4.在Linux端命令行中输入单词
这里写图片描述

5.在IDEA控制台中查看结果
这里写图片描述

二、DStream的使用

package cn.toto.spark

import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}
import org.apache.spark.streaming.{Seconds, StreamingContext}

/**
  * Created by toto on 2017/7/13.
  */
object StreamingWordCount {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setAppName("StreamingWordCount").setMaster("local[2]")
    //创建StreamingContext并设置产生批次的间隔时间
    val ssc = new StreamingContext(conf, Seconds(5))
    //从Socket端口中创建RDD
    val lines:ReceiverInputDStream[String] = ssc.socketTextStream("hadoop1",9999)
    val words: DStream[String] = lines.flatMap(_.split(" "))
    val wordAndOne: DStream[(String, Int)] = words.map((_, 1))
    val result: DStream[(String, Int)] = wordAndOne.reduceByKey(_+_)
    //打印
    result.print()
    //开启程序
    ssc.start()
    //等待结束
    ssc.awaitTermination()
  }
}

运行结果:
这里写图片描述


上面的案例中,所有的都是临时计算,然后获得到结果内容,第二次计算的时候结果值不是在上一次基础上进行累加的。下面的案例中将实现累加的效果:

在上述的wordCount案例中,每次在Linux端输入的单词次数都被正确的统计出来,但是结果不能累加,如果需要累加需要使用updateStateByKey(func)来更新状态

package cn.toto.spark

import cn.toto.spark.streams.LoggerLevels
import org.apache.spark.{HashPartitioner, SparkConf}
import org.apache.spark.streaming.{Seconds, StreamingContext}

object NetworkUpdateStateWordCount {

  /**
    * String : 单词
    * Seq[Int] :单词在当前批次出现的次数
    * Option[Int] : 历史结果
    */
  val updateFunc = (iter: Iterator[(String, Seq[Int], Option[Int])]) => {
    //iter.flatMap(it=>Some(it._2.sum + it._3.getOrElse(0)).map(x=>(it._1,x)))
    iter.flatMap{case(x,y,z)=>Some(y.sum + z.getOrElse(0)).map(m=>(x, m))}
  }

  def main(args: Array[String]) {
    LoggerLevels.setStreamingLogLevels()
    val conf = new SparkConf().setMaster("local[2]").setAppName("NetworkUpdateStateWordCount")
    val ssc = new StreamingContext(conf, Seconds(5))
    //做checkpoint 写入共享存储中
    ssc.checkpoint("E://workspace//netresult")
    val lines = ssc.socketTextStream("hadoop1", 9999)
    //reduceByKey 结果不累加
    //val result = lines.flatMap(_.split(" ")).map((_, 1)).reduceByKey(_+_)
    //updateStateByKey结果可以累加但是需要传入一个自定义的累加函数:updateFunc
    val results = lines.flatMap(_.split(" "))
                       .map((_,1)).updateStateByKey(
                            updateFunc,new HashPartitioner(ssc.sparkContext.defaultParallelism),true)
    results.print()
    ssc.start()
    ssc.awaitTermination()
  }

}

在nc上输入内容:
这里写图片描述

运行结果如下:
这里写图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

涂作权的博客

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值